问答题(2022年天津市

设{an}是等差数列;{bn}是等比数列;a1=b1=a2-b2=a3-b3=1.

(1)求{an}与{bn  }的通项公式;

(2)设{an}的前n项和为Sn,求证:(Sn+1+an+1 ) bn=Sn+1 bn+1-Sn bn

(3)求∑k=12n(ak+1-(-1)k ak ) bk .

答案解析

(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,∵a1=b1=a2-b2=a3-b3=1,∴1+d-q=1,1+2d-q2=1,解得d=q=2,∴an=1+2(n-1)=2n-1,bn=2n-1.(2)∵bn+1=2bn≠0,∴要证明(Sn+1+an+1 ) bn=Sn+1 bn+1-Sn bn,即证明(Sn+1+an+1 ) bn=Sn+1∙2bn-Sn bn即证明an+1=Sn+1-Sn,此结论可由数列的通项公式和前n项和的关系得到.(3)∵[a2k-(-1)2k-1 a2k-1 ] b2k-1+[a2k+1-(-1)2ka2k ] b...

查看完整答案

讨论

已知等差数列{an}的公差d>0,首项an>0,Sn=1/(aiai+1),则Sn =________。

等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为【 】

已知数列{bn }是等列数差,b1=1,b1+b2+⋯+b10=145.(Ⅰ)求数列{bn }的通项bn;(Ⅱ)设数列{an }的通项an=loga⁡(1+1/bn )(其中a>0,且a≠1,记Sn是数列{an }的前n项和.试比较Sn与1/3 logabn+1的大小,并证明你的结论.

设{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是【 】

若Sn是数列{an }的前n项和.且Sn=n2,则{an }是【 】

已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列;②数列{}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.

已知{an }为等差数列,{bn}是公比为2的等比数列,且a2-b2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{ k| bk=am+a1,1≤m≤500}中元素个数.

记Sn为数列{an }的前n项和.已知2Sn/n+n=2an+1.(1)证明:{an }是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.

记Sn为等差数列{an}的前n项和.若2S3=3S2+6,则公差d=__________.

已知等差数列{an}的首项a1=-1,公差d>1.记{an}的前n项和为Sn(n∈N* ).(1)若S4-2a2 a3+6=0,求Sn;(2)若对于每个n∈N*,存在实数cn,使an+cn,an+1+4cn,an+2+15cn成等比数列,求d的取值范围.

已知等比数列{an}的前3项和为168,a2-a5=42,则a6=【 】

已知等比数列{an}的前3项和为168,a2-a5=42,则a6=【 】

我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物林质量的“环权”,已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{an},该数列的前3项成等差数列,后7项成等比数列,且a1=1,a5=12,a9=192,则a7=______;数列{an}所有项的和为________.

设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.

设 {an} 是等比数列, 且 a1 + a2 + a3 = 1, a2 + a3 + a4 = 2, 则 a6 + a7 + a8 =【 】

已知公比大于 1 的等比数列 {an} 满足 a2 + a4 = 20, a3 = 8.(1) 求 {an} 的通项公式;(2) 记 bm 为 {an} 在区间 (0, m] (m ∈ N∗) 中的项的个数, 求数列 {bm} 的前 100 项和 S100.

已知 {an} 是无穷数列. 给出两个性质:① 对于 {an} 中任意两项 ai, aj (i > j), 在 {an} 中都存在一项 am, 使得 =am;② 对于 {an} 中任意一项 an (n ⩾ 3), 在 {an} 中都存在两项 ak, al (k > l), 使得 an = .(I) 若 an = n (n = 1, 2, …), 判断数列 {an} 是否满足性质 ①, 说明理由;(II) 若 an = 2n−1 (n = 1, 2, · · · ), 判断数列 {an} 是否同时满足性质 ① 和性质 ②, 说明理由;(III) 若 {an} 是递增数列, 且同时满足性质 ① 和性质 ②, 证明: {an} 为等比数列.

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*.(Ⅰ)证明:{an - 1} 是等比数列;(Ⅱ)求数列{Sn}的通项公式。请指出n为何值时,Sn取得最小值,并说明理由.

已知 {an} 是等比数列,且an > 0,a2a4 + 2a3a5 + a4a6 = 25,那么a3 + a5的值等于【 】

设{an}是由正数组成的等比数列,Sn是其前n项和.(1)证明(lgSn+lgSn+2)/2<lgSn+1.(2)是否存在常数c>0,使得[lg(Sn-c)+lg⁡(Sn+2-c)]/2=lg(Sn+1-c)成立?并证明你的结论.

极限(C22+C32+C42+⋯+Cn2)/(n(C21+C31+C41+⋯+Cn1))=【 】

0−1 周期序列在通信技术中有着重要应用. 序列 a1a2 · · · an · · · 满足 a1 ∈ {0, 1} (i = 1, 2, · · · ), 且存在正整 数 m, 使得 ai+m = ai (i = 1, 2, · · · ) 成立, 则称其为 0−1 周期数列, 并称满足 ai+m = ai (i = 1, 2, · · · ) 的最小正整数 m 为这个序列的周期. 对于周期为 m 的 0−1 序列 a1a2 · · · an · · · , C(k) =(k = 1, 2, · · · , m−1)是描述其性质的重要指标. 下列周期为 5 的 0 − 1 序列中, 满足 C(k) ⩽ 1/5(k = 1, 2, 3, 4) 的序列是【 】

已知 {an} 为等差数列, {bn} 为等比数列, a1 = b1 = 1, a5 = 5(a4 − a3), b5 = 4(b4 − b3).(I) 求 {an} 和 {bn} 的通项公式;(II) 记 {an} 的前 n 项和为 Sn, 求证: SnSn+2 < Sn+12 (n ∈ N∗);(III) 对任意的正整数 n, 设 cn = .求数列 {cn} 的前 2n 项和.

已知有限数列 {an} 项数为 m, 若其满足: |a1 − a2| ⩽ |a1 − a3| ⩽ · · · ⩽ |a1 − am|, 则称数列 {an} 满足性质 P .(1) 判断数列 3, 2, 5, 1 和数列 4, 3, 2, 5, 1 是否具有性质 P ;(2) 已知 a1 = 1, 公比为 q 的等比数列, 项数为 10, 具有性质 P , 求 q 的取值范围;(3) 若 an 是 1, 2, 3, · · · , m (m ⩾ 4) 的一个排列, bk = ak+1 (k = 1, 2, 3 · · · , m − 1), 数列 {an}, {bn} 都具有性质 P , 求所有满足条件的 {an}.

已知数列 {an}, {bn}, {cn} 中, a1 = b1 = c1 = 1, cn+1 = an+1 − an, cn+1=bn/bn+2 ∙cn (n ∈ N∗).(I) 若数列 {bn} 为等比数列, 且公比 q > 0, 且 b1 + b2 = 6b3, 求 q 的值及数列 {an} 的通项公式;(II) 若数列 {bn} 为等差数列, 且公差 d > 0, 证明: c1 + c2 + … + cn < 1 +1/d , n ∈ N∗.

试问数列:lg100,lg⁡(100sinπ/4),lg⁡(100sin2π/4),⋯,lg⁡(100sinn-1π/4),前多少项的和的值最大?并求出这大值(这里取lg2=0.301)

已知以AB为直径的半圆有一个内接正方形CDEF,其边长为1(如图).设AC=a,BC=b,作数列u1=a-b,u2=a2-ab+b2,u3=a3-a2b+ab2-b3,...uk=ak-ak-1b+ak-2b2-...+(-1)kbk;求证:un=un-1+un-2 (n≥3).

已知数列a1,a2,⋯an,⋯和数列b1,b2,⋯bn,⋯,其中a1=p,b1=q,an=pan-1,bn=qan-1+rbn-1 (n≥2)(p,q,r是已知常数,且q≠0,p>r>0).(1) 用p,q,r,n表示bn,并用数学归纳法加以证明;(2) 求.

全国统考数列与推理

全国统考数列极限