问答题(2020年北京市

已知 {an} 是无穷数列. 给出两个性质:

① 对于 {an} 中任意两项 ai, aj (i > j), 在 {an} 中都存在一项 am, 使得 =am;

② 对于 {an} 中任意一项 an (n ⩾ 3), 在 {an} 中都存在两项 ak, al (k > l), 使得 an .

(I) 若 an = n (n = 1, 2, …), 判断数列 {an} 是否满足性质 ①, 说明理由;

(II) 若 an = 2n−1 (n = 1, 2, · · · ), 判断数列 {an} 是否同时满足性质 ① 和性质 ②, 说明理由;

(III) 若 {an} 是递增数列, 且同时满足性质 ① 和性质 ②, 证明: {an} 为等比数列.

答案解析

(I) 若 an = n (n = 1, 2, … ), { an } 不满足性质 ①: a3 = 3, a2 = 2, 则 =9/2 ∉ N*.(II) 若 an = 2n−1 (n = 1, 2, · · · ), 数列 {an} 同时满足性质 ① 和性质 ②对 {an} 中任意两项 ai, aj (i > j), = = = a2i−j = am, 即存在 m = 2i − j 满足性质 ①.对 {an} 中任意一项 an (n ⩾ 3), an = 2n−1 = 22(k−l)−1 = , 即存在 k, l, 使得 n = 2k − l 成立即可, 满足性质 ②.(III) 假设 k ⩽ n 时, 有 ak = a1qk−1, 对 an+1 由性质 ②, ∃ 正整数 i > j, 使 an+1 = .又 {an} 递增, 所以 ai > aj.若 a1 > 0, 则 ai > aj > 0 ⇒ an+1 = > ai × 1 = ai > aj, 所以 j < i < n + 1, 所以ai = a1qi−1, aj = a1qj−1,an+1 = = a1q2(i-1...

查看完整答案

讨论

已知椭圆 C : x2/a2 +y2/b2 =1过点 A(−2, −1), 且 a = 2b.(I) 求椭圆 C 的方程;(II) 过点 B(−4, 0) 的直线 l 交椭圆 C 于点 M, N, 直线 MA, NA 分别交直线 x = −4 于点 P, Q. 求 |PB|/|BQ|的值.

已知函数 f(x) = 12 − x2.(I) 求曲线 y = f(x) 的斜率等于 −2 的切线方程;(II) 设曲线 y = f(x) 在点 (t, f(t)) 处的切线与坐标轴围成的三角形的面积为 S(t), 求 S(t) 的最小值.

某校为举办甲、乙两项不同活动, 分别设计了相应的活动方案: 方案一、方案二. 为了解该校学生对活动方案是否支持, 对学生进行简单随机抽样, 获得数据如下表:假设所有学生对活动方案是否支持相互独立.(I) 分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(II) 从该校全体男生中随机抽取 2 人, 全体女生中随机抽取 1 人, 估计这 3 人中恰有 2 人支持方案一的概率;(III) 将该校学生支持方案二的概率估计值记为 p0. 假设该校一年级有 500 名男生和 300 名女生, 除一年级外其他年级学生支持方案二的概率估计值记为 p1. 试比较 p0 与 p1 的大小. (结论不要求证明)

在 △ABC 中, a + b = 11, 再从条件 ①、条件 ② 这两个条件中选择一个作为已知, 求:(I) a 的值;(II) sin C 和 △ABC 的面积.条件 ①: c = 7, cos A = -1/7;条件 ②: cos A = 1/8, cos B = 9/16.注: 如果选择条件 ① 和条件 ② 分别解答, 按第一个解答计分.

如图, 在正方体 ABCD − A1B1C1D1 中, E 为 BB1 的中点.(I) 求证: BC1 // 平面 AD1E;(II) 求直线 AA1 与平面 AD1E 所成角的正弦值.

为满足人民对美好生活的向往, 环保部门要求相关企业加强污水治理, 排放未达标的企业要限期整改. 设企业的污水排放量 W 与时间 t 的关系为 W = f(t). 用 -(f(b)-f(a))/(b-a)的大小评价在 [a, b] 这段时间内企业污水治理能力的强弱. 已知整改期内, 甲、乙两企业的污水排放量与时间的关系如下图所示.① 在 [t1, t2] 这段时间内, 甲企业的污水治理能力比乙企业强;② 在 t2 时刻, 甲企业的污水治理能力比乙企业强;③ 在 t3 时刻, 甲、乙两企业的污水排放都已达标;④ 甲企业在 [0, t1], [t1, t2], [t2, t3] 这三段时间中, 在 [0, t1] 的污水治理能力最强.其中所有正确结论的序号是__________.

若函数 f(x) = sin(x + φ) + cosx 的最大值为 2, 则常数 φ 的一个取值为__________.

已知正方形 ABCD 的边长为 2, 点 P 满足 =1/2(+) ,则|| =______ ; · =______ .

已知双曲线 C :x2/6-y2/3=1, 则 C 的右焦点的坐标为_______; C 的焦点到其渐近线的距离是 ______.

函数 f(x) = 1/(x+1)+lnx 的定义域是__________.

数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = ______.

数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】

0−1 周期序列在通信技术中有着重要应用. 序列 a1a2 · · · an · · · 满足 a1 ∈ {0, 1} (i = 1, 2, · · · ), 且存在正整 数 m, 使得 ai+m = ai (i = 1, 2, · · · ) 成立, 则称其为 0−1 周期数列, 并称满足 ai+m = ai (i = 1, 2, · · · ) 的最小正整数 m 为这个序列的周期. 对于周期为 m 的 0−1 序列 a1a2 · · · an · · · , C(k) =(k = 1, 2, · · · , m−1)是描述其性质的重要指标. 下列周期为 5 的 0 − 1 序列中, 满足 C(k) ⩽ 1/5(k = 1, 2, 3, 4) 的序列是【 】

如图, 将钢琴上的 12 个键依次记为 a1, a2, · · · , a12, 设 1 ⩽ i ⩽ j ⩽ k ⩽ 12. 若 k − j = 3 且 j − i = 4, 则称 ai, aj, ak 为原位大三和弦; 若 k − j = 4 且 j − i = 3, 则称 ai, aj, ak 为原位小三和弦. 用这 12 个键可以构成的原 位大三和弦与原位小三和弦的个数之和为【 】

设数列 {an} 满足 a1 = 3, an+1 = 3an − 4n.(1) 计算 a2, a3, 猜想 {an} 的通项公式并加以证明;(2) 求数列 {2nan} 的前 n 项和 Sn.

信息熵是信息论中的一个重要概念. 设随机变量 X 所有可能的取值为 1, 2, … , n, 且 P (X = i) = pi >0 (i = 1, 2, …, n), =1, 定义 X 的信息熵 H(X) = −log2 pi.【 】

将数列 {2n − 1} 与 {3n − 2} 的公共项从小到大排列得到数列 {an}, 则 {an} 的前 n 项和为 __________.

某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm, 10dm×6dm,24dm×3dm,三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为______;如果对折n次,那么 Sk=________dm2.

已知数列{an}满足a1=1,an+1=(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和.

数列{an}是递增的整数数列,且a1≥3,a1+a2+⋯+an=100,则n的最大值为【 】