问答题(2020年北京市

已知椭圆 C : x2/a2 +y2/b2 =1过点 A(−2, −1), 且 a = 2b.

(I) 求椭圆 C 的方程;

(II) 过点 B(−4, 0) 的直线 l 交椭圆 C 于点 M, N, 直线 MA, NA 分别交直线 x = −4 于点 P, Q. 求 |PB|/|BQ|的值.

答案解析

(I) 将点 (−2, −1) 代入椭圆方程有4/a2 +1/b2 =1且 a = 2b, 则 b2 = 2, a2 = 8. 故 C : x2/8+y2/2=1.(II) 由题意结合 (I) 画出解析图如图所示. 设直线 l 的方程为 x = ty − 4, 联立直线 l 与椭圆方程 , 整理得(t2 + 4)y2 − 8ty + 8 = 0.由韦达定理得y1+y2=8t/(t2+4) ,...

查看完整答案

讨论

已知椭圆E:x²/a² +y²/b² =1(a>b>0)的离心率为√3/5.设椭圆E的上、下顶点分别为A,C,左、右顶点分别为B,D,|AC|=4.(1)求椭圆E的方程;(2)点P在椭圆E的第一象限上运动,直线PD与直线BC交于点M,直线AP与直线y=-2交于点N.求证:MN//CD.

已知A(0,3)和P(3,3/2)为椭圆C:x²/a² +y²/b² =1(a>b>0)上两点.(1)求椭圆C的离心率;(2)若过点P的直线l交C于另一点B,且△ABP的面积为9,求l的方程.

已知 A, B 分别为椭圆 E : +y2 = 1(a > 1) 的左、右顶点, G 为 E 的上顶点, = 8, P 为直线 x = 6上的动点, PA 与 E 的另一交点为 C, PB 与 E 的另一交点为 D.(1) 求 E 的方程;(2) 证明: 直线 CD 过定点.

已椭圆 +y2 =1,圆x2 + y2=4,从圆上一点作椭圆的切点弦,求切点弦所围成的面积.

已知椭圆 C1 : x2/a2 + y2/b2 = 1(a > b > 0) 的右焦点 F 与抛物线 C2 的焦点重合. C1 的中心与 C2 的顶点重合,过 F 且与 x 轴垂直的直线交 C1 于 A, B 两点, 交 C2 于 C, D 两点. 且 |CD| = 4/3|AB|.(1) 求 C1 的离心率;(2) 设 M 是 C1 与 C2 的公共点. 若 |MF | = 5, 求 C1 与 C2 的标准方程.

已知椭圆 C1 : x2/a2 + y2/b2 = 1(a > b > 0) 的右焦点 F 与抛物线 C2 的焦点重合. C1 的中心与 C2 的顶点重合,过 F 且与 x 轴垂直的直线交 C1 于 A, B 两点, 交 C2 于 C, D 两点. 且 |CD| = 4/3|AB|.(1) 求 C1 的离心率;(2) 若C1的四个顶点到C2的准线距离之和为12, 求 C1 与 C2 的标准方程.

己知椭圆 C : x2/25 + y2/m2 = 1 (0 < m < 5) 的离心率为 , A, B 分别为 C 的左、右顶点.(1) 求 C 的方程;(2) 若点 P 在 C 上, 点 Q 在直线 x = 6 上, 且 |BP| = |BQ|, BP⊥BQ, 求 △APQ 的面积.

已知椭圆 C : x2/a2 +y2/b2 = 1 (a > b > 0) 的离心率为/2 , 且过点 A(2, 1).(1) 求 C 的方程;(2) 点 M, N 在 C 上, 且 AM ⊥ AN, AD ⊥ MN, D 为垂足. 证明: 存在定点 Q, 使得 |DQ| 为定值.

已知椭圆短轴长为2,中心与抛物线y2=4x的顶点重合,椭圆的一个焦点恰是此抛物线的焦点,求椭圆方程及其长轴的长。

已知菱形的一对内角各为60°,边长为4,以菱形对角线所在的直线为坐标轴建立直角坐标系,以菱形60°角的两个顶点为焦点,并且过菱形的另外两个顶点作椭圆,求椭圆方程.