己知椭圆 C : x2/25 + y2/m2 = 1 (0 < m < 5) 的离心率为 , A, B 分别为 C 的左、右顶点.
(1) 求 C 的方程;
(2) 若点 P 在 C 上, 点 Q 在直线 x = 6 上, 且 |BP| = |BQ|, BP⊥BQ, 求 △APQ 的面积.
己知椭圆 C : x2/25 + y2/m2 = 1 (0 < m < 5) 的离心率为 , A, B 分别为 C 的左、右顶点.
(1) 求 C 的方程;
(2) 若点 P 在 C 上, 点 Q 在直线 x = 6 上, 且 |BP| = |BQ|, BP⊥BQ, 求 △APQ 的面积.
(1) 由题设可得 ,得 m2=25/16 , 所以 C 的方程为x2/25 + y2/(25/16) = 1.(2) 设 P (xP , yP ), Q(6, yQ), 根据对称性可设 yQ > 0, 由题意知 yP > 0.由已知可得 B(5, 0), 直线 BP 的方程为 y=-1/yQ (x-5) , 所以 |BP| = yP , |BQ| = .因为 |BP| = |BQ|, 所以 yP = 1, 将 yP = 1 代入 C 的方程, 解得 xP = 3 或 −3.由直线 BP 的方程得 yQ = 2 ...
查看完整答案已知A(0,3)和P(3,3/2)为椭圆C:x²/a² +y²/b² =1(a>b>0)上两点.(1)求椭圆C的离心率;(2)若过点P的直线l交C于另一点B,且△ABP的面积为9,求l的方程.
已椭圆 +y2 =1,圆x2 + y2=4,从圆上一点作椭圆的切点弦,求切点弦所围成的面积.
已知椭圆短轴长为2,中心与抛物线y2=4x的顶点重合,椭圆的一个焦点恰是此抛物线的焦点,求椭圆方程及其长轴的长。
已知菱形的一对内角各为60°,边长为4,以菱形对角线所在的直线为坐标轴建立直角坐标系,以菱形60°角的两个顶点为焦点,并且过菱形的另外两个顶点作椭圆,求椭圆方程.
设P点在椭圆所引之二切线与其长轴之夹角为θ1,θ2,试就下列情形分别求P之轨迹.(1).tanθ1+tanθ2 为一定值.(2).cotθ1+cotθ2 为一定值.
求圆锥曲线 x² +y² = 49 及 x² +y² - 20y +90 =0之公切线的长.
一动圆与 (x - 2)² +y² =1及 Y 轴皆相切,求动圆圆心之轨迹方程.
若 kxy - 8x + 9y - 12 = 0 表示二条直线,求 k 值及此二直线所夹的角.
求自原点至圆x²+y²-14x+2y+25=0所作的二切线的交角.
二直线x+y+4=0,x-y=0各与圆x²+y²-2x+4y-4=0相交,且所围成之二弓形面积相等,试证明之.
过一点 (2,1)的直线与直线 2x - 3y + 12 = 0 成45°角,求直线方程.