问答题(1933年南开大学

Find the area of the triangle out off from the first quadrant by the tangent to the ellipse 2x² + 3y² = 14 at the point (1, 2).

答案解析

暂无答案

讨论

已知二次函数y=x2﹣6x+5.(1)求出它的图象的顶点坐标和对称轴方程;(2)画出它的图象;(3)分别求出它的图象和x轴、y轴的交点坐标.

已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,-1)的直线交C于P,Q两点,则【 】

设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.

设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】

设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】

如图,已知椭圆x2/12+y2=1.设A,B是椭圆上异于P(0,1)的两点,且点Q(0,1/2)在线段AB上,直线PA,PB分别交直线y=-1/2 x+3于C,D两点. (1)求点P到椭圆上点的距离的最大值;(2)求|CD|的最小值.

双曲线x2/9-y2=1的实轴长为________.

已知Γ:x2/a2 +y2/b2 =1(a>b>0)的左、右焦点分别为F1 (-√2,0),F2 (√2,0),A为Γ的下顶点,M为直线l:x+y-4√2=0上一点.(1)若a=2,AM的中点在x轴上,求点M的坐标;(2)直线l交y轴于点B,直线AM经过点F2,若△ABM有一个内角的余弦值为3/5,求b;(3)若椭圆Γ上存在点P到直线l的距离为d,且满足d+|PF1 |+|PF2 |=6,当a变化时,求d的最小值.

已知双曲线中心在原点,且一个焦点为F(√7,0),直线y=x-1与其相交于M,N两点,MN的中点横坐标为-2/3,则此双曲线的方程是【 】

已知椭圆方程x2/a2 +y2/b2 =1,F为右焦点,A为右顶点,B为上顶点,|BF|/|AB| =√3/2.(1)求椭圆的离心率e;(2)已知直线l与椭圆有唯一交点M,直线l交y轴于点N,|OM|=|ON|,∆OMN的面积为√3,求椭圆的标准方程.

定义椭圆x2/a2 +y2/b2 =1的辅助圆为x2+y2=a2.考虑椭圆x2/4+y2/3=1,点H(a,0),0<a<2. 在第一象限内,过H平行于y轴的直线与椭圆交于点E,与椭圆的辅助圆交于点F,椭圆在点E处的切线与x轴正半轴交于点G,过原点和F的直线与x轴正半轴的夹角为φ.列Ⅰ 列Ⅱ(Ⅰ)若φ=π/4,则△FGH的面积为 (P) (√3-1)4/8(Ⅱ)若φ=π/3,则△FGH的面积为 (Q) 1(Ⅲ)若φ=π/6,则△FGH的面积为 (R) 3/4(Ⅳ)若φ=π/12,则△FGH的面积为 (S) 1/(2√3) (T) (3√3)/2正确的选项为【 】

英:Find the equations to the tangents to the ellipse 3x²+ y² = 3, inclined at angle of 45° to the axis of x.汉:求椭圆 3x²+y²=3之与x轴夹角为 45°的切线方程.

Find the locus of the point of intersection of lines drawn through the foci of an ellipse parallel to conjugate diameters.

已知 A, B 分别为椭圆 E : +y2 = 1(a > 1) 的左、右顶点, G 为 E 的上顶点, = 8, P 为直线 x = 6上的动点, PA 与 E 的另一交点为 C, PB 与 E 的另一交点为 D.(1) 求 E 的方程;(2) 证明: 直线 CD 过定点.

已椭圆 +y2 =1,圆x2 + y2=4,从圆上一点作椭圆的切点弦,求切点弦所围成的面积.

已知椭圆 C1 : x2/a2 + y2/b2 = 1(a > b > 0) 的右焦点 F 与抛物线 C2 的焦点重合. C1 的中心与 C2 的顶点重合,过 F 且与 x 轴垂直的直线交 C1 于 A, B 两点, 交 C2 于 C, D 两点. 且 |CD| = 4/3|AB|.(1) 求 C1 的离心率;(2) 设 M 是 C1 与 C2 的公共点. 若 |MF | = 5, 求 C1 与 C2 的标准方程.

已知椭圆 C1 : x2/a2 + y2/b2 = 1(a > b > 0) 的右焦点 F 与抛物线 C2 的焦点重合. C1 的中心与 C2 的顶点重合,过 F 且与 x 轴垂直的直线交 C1 于 A, B 两点, 交 C2 于 C, D 两点. 且 |CD| = 4/3|AB|.(1) 求 C1 的离心率;(2) 若C1的四个顶点到C2的准线距离之和为12, 求 C1 与 C2 的标准方程.

己知椭圆 C : x2/25 + y2/m2 = 1 (0 < m < 5) 的离心率为 , A, B 分别为 C 的左、右顶点.(1) 求 C 的方程;(2) 若点 P 在 C 上, 点 Q 在直线 x = 6 上, 且 |BP| = |BQ|, BP⊥BQ, 求 △APQ 的面积.

已知椭圆 C : x2/a2 +y2/b2 = 1 (a > b > 0) 的离心率为/2 , 且过点 A(2, 1).(1) 求 C 的方程;(2) 点 M, N 在 C 上, 且 AM ⊥ AN, AD ⊥ MN, D 为垂足. 证明: 存在定点 Q, 使得 |DQ| 为定值.

已知椭圆 C : x2/a2 +y2/b2 =1过点 A(−2, −1), 且 a = 2b.(I) 求椭圆 C 的方程;(II) 过点 B(−4, 0) 的直线 l 交椭圆 C 于点 M, N, 直线 MA, NA 分别交直线 x = −4 于点 P, Q. 求 |PB|/|BQ|的值.