已知抛物线y2=4√5 x,F1,F2分别是双曲线x2/a-y2/b=1(a>0,b>0)的左右焦点,抛物线的准线过双曲线的左焦点F1,与双曲线的渐近线交于点A,,若∠F1 F2 A=π/4,则双曲线的标准方程是【 】
A、x2/10-y2=1
B、x2-y2/16=1
C、x2-y2/4=1
D、x2/4-y2=1
已知直线l:x - ny = 0(n∈N);圆M:(x+1)2 + (y+1)2 = 1;抛物线Φ:y=(x-1)2.又l与M交于点A,B;l与Φ交于点C,D.求|AB|2/|CD|2.
已知圆x2 + y2 - 6x - 7 = 0与抛物线y2 = 2px(p>0)的准线相切,则p=________.
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B两点,点C在抛物线的准线上,且BC//x轴.证明AC经过原点O.
抛物线x2 - 4y - 3=0的焦点坐标为________.
已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直, Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为__________.
已知抛物线C:y2=2px(p>0)的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足=9,求直线OQ斜率的最大值.
已知抛物线C:y2=4x,焦点为F,点M在C上,且|FM|=6,则M的横坐标是______;作MN⊥x轴于N,则S△FMN=______.
已知抛物线y2=2px(p>0),若第一象限的点A,B在抛物线上,焦点为F,|AF|=2,|BF|=4,|AB|=3,直线AB的斜率为__________.
已知点 O(0, 0), A(−2, 0), B(2, 0). 设点 P 满足 |PA| − |PB| = 2, 且 P 为函数 y=3 图像上的点,则 |OP| =【 】
设椭圆方程为x2/a2 +y2/b2 =1(a>b>0),令c=,那么它的准线方程为【 】
双曲线的中心在坐标原点O,焦点在x轴上,过双曲线右焦点且斜率为的直线交双曲线于P,Q两点.若OP⊥OQ,|PQ|=4,求双曲线的方程.
焦点为F1(-2,0)和F2(6,0),离心率为2的双曲线的方程是____________.
如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为【 】
设F1和F2为双曲线x2/4 - y2 = 1的两个焦点,点P在双曲线上且满足∠F1PF2 = 90°,则△F1PF2的面积是【 】
设双曲线x2/a2 - y2/b2 =1(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点.已知原点到直线l的距离为/4 c,则双曲线的离心率为【 】
已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为【 】
点(3,0)到双曲线x2/16 - y2/9=1的一条渐近线的距离为【 】
双曲线x2/a2 -y2/b2 =1过点(,),离心率为2,则双曲线的解析式为【 】
若双曲线y2-x2/m2 =1(m>0)的渐近线与圆x2+y2-4y+3=0相切,则m=_________.
记双曲线C:x2/a2 -y2/b2 =1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值_________.
双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=3/5,则C的离心率为【 】