单项选择(1995年全国统考

双曲线3x2 - y2 = 3的渐近线方程是【 】

A、y=±3x

B、y=±1/3 x

C、y=± x

D、y=±/3 x

答案解析

C

讨论

已知椭圆 C1 : x2/a2 + y2/b2 = 1(a > b > 0) 的右焦点 F 与抛物线 C2 的焦点重合. C1 的中心与 C2 的顶点重合,过 F 且与 x 轴垂直的直线交 C1 于 A, B 两点, 交 C2 于 C, D 两点. 且 |CD| = 4/3|AB|.(1) 求 C1 的离心率;(2) 若C1的四个顶点到C2的准线距离之和为12, 求 C1 与 C2 的标准方程.

己知椭圆 C : x2/25 + y2/m2 = 1 (0 < m < 5) 的离心率为 , A, B 分别为 C 的左、右顶点.(1) 求 C 的方程;(2) 若点 P 在 C 上, 点 Q 在直线 x = 6 上, 且 |BP| = |BQ|, BP⊥BQ, 求 △APQ 的面积.

已知椭圆 C : x2/a2 +y2/b2 = 1 (a > b > 0) 的离心率为/2 , 且过点 A(2, 1).(1) 求 C 的方程;(2) 点 M, N 在 C 上, 且 AM ⊥ AN, AD ⊥ MN, D 为垂足. 证明: 存在定点 Q, 使得 |DQ| 为定值.

已知椭圆 C : x2/a2 +y2/b2 =1过点 A(−2, −1), 且 a = 2b.(I) 求椭圆 C 的方程;(II) 过点 B(−4, 0) 的直线 l 交椭圆 C 于点 M, N, 直线 MA, NA 分别交直线 x = −4 于点 P, Q. 求 |PB|/|BQ|的值.

设双曲线 C 的方程为 x2/a2 -y2/b2 =1 (a > 0, b > 0), 过抛物线 y2 = 4x 的焦点和点 (0, b) 的直线为 l. 若 C 的一条渐近线与 l 平行, 另一条渐近线与 l 垂直, 则双曲线 C 的方程为【 】.

已知椭圆 x2/a2 +y2/b2 =1 (a > b > 0) 的一个顶点为 A(0, −3), 右焦点为 F , 且 |OA| = |OF|, 其中 O 为原点.(I) 求椭圆的方程;(II) 已知点 C 满足 3=, 点 B 在椭圆上 (B 异于椭圆的顶点), 直线 AB 与以 C 为圆心的圆相切于点P , 且 P 为线段 AB 的中点. 求直线 AB 的方程.

已知椭圆 x2/4+y2/3=1 , 点 P 在第二象限, F 是其右焦点, PF 交椭圆于 Q, Q 关于 x 轴对称点 Q′, 且PF ⊥ FQ′, 直线 PF 的方程是_______________.

双曲线C1: x2/4-y2/b2 =1 与圆 C2 : x2 + y2 = 4 + b2 (b > 0) 交于点 A(xA, yA), 曲线 Γ 满足 x > |xA| 并在曲线 C1、C2 上.(1) 若 xA=, 求 b 的值;(2) b =, 圆 C2 与 x 轴交于点 F1, F2, P 在第一象限, |PF1| = 8, 求 ∠F1PF2;(3) 点 D(0,b2/2+2), 过该点的直线斜率为 -b/2 的直线 l 和 Γ 只有两个交点, 记作 M, N, 用 b 表示 ∙,并求其取值范围.

已知点 O(0, 0), A(−2, 0), B(2, 0). 设点 P 满足 |PA| − |PB| = 2, 且 P 为函数 y=3 图像上的点,则 |OP| =【 】

在平面直角坐标系 xOy 中, 已知椭圆 E : x2/4+y2/3=1 的左、右焦点分别为 F1、F2, 点 A 在椭圆 E 上且在第一象限内, AF2⊥F1F2, 直线 AF1 与椭圆 E 相交于另一点 B.(1) 求 △AF1F2 的周长;(2) 在 x 轴上任取一点 P , 直线 AP 与椭圆 E 的右准线相交于点 Q, 求 ∙的最小值;(3) 设点 M 在椭圆 E 上, 记 △OAB 与 △MAB 的面积分别为 S1, S2, 若 S2 = 3S1, 求点 M 的坐标.