填空题(1990年全国统考

双曲线y2/16 - x2/9=1的准线方程是__________.

答案解析

y=±16/5

讨论

已知点A(2,1)在双曲线C:x2/a2 -y2/(a2-1)=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan⁡∠PAQ=2√2,求△PAQ的面积.

已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则【 】

设双曲线C:x2/a2 -y2/b2 =1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±√3 x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1 ),Q(x2,y2)在C上,且x1>x2>0,y1>0.过P且斜率为-√3的直线与过Q且斜率为 的直线交于点M,请从下面①②③中选取两个作为条件,证明另外一个条件成立:①M在AB上;②PQ//AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.

设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.

双曲线x2/9-y2=1的实轴长为________.

已知双曲线中心在原点,且一个焦点为F(√7,0),直线y=x-1与其相交于M,N两点,MN的中点横坐标为-2/3,则此双曲线的方程是【 】

已知抛物线y2=4√5 x,F1,F2分别是双曲线x2/a-y2/b=1(a>0,b>0)的左右焦点,抛物线的准线过双曲线的左焦点F1,与双曲线的渐近线交于点A,,若∠F1 F2 A=π/4,则双曲线的标准方程是【 】

双曲线x²/100-y²/64=1的焦点为S,S1;,其中S位于x正半轴上. P为双曲线在第一象限上的一点,记∠SPS1=α,α<π/2. 过点S且斜率与双曲线在P点切线相同的直线,与直线S1 P交于P1点,记P到直线SP1的距离为δ,β=S1 P.则不超过βδ/9 sin⁡α/2的最大整数为______.

于双曲线4/3 (x-2)2-(y+1)2=1中,已知其一直径之斜度为1/3,试求此直径及其共轭直径之方程式,若以此二共轭直径为新坐标轴,试求双曲线之新方程式.

有圆锥曲线方程式为 5x² -4y² - 20x - 24y + 4= 0,试求其中心、焦点、渐近线、准线.