设双曲线C:x2/a2 -y2/b2 =1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±√3 x.
(1)求C的方程;
(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1 ),Q(x2,y2)在C上,且x1>x2>0,y1>0.过P且斜率为-√3的直线与过Q且斜率为 的直线交于点M,请从下面①②③中选取两个作为条件,证明另外一个条件成立:
①M在AB上;②PQ//AB;③|MA|=|MB|.
注:若选择不同的组合分别解答,则按第一个解答计分.
设双曲线C:x2/a2 -y2/b2 =1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±√3 x.
(1)求C的方程;
(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1 ),Q(x2,y2)在C上,且x1>x2>0,y1>0.过P且斜率为-√3的直线与过Q且斜率为 的直线交于点M,请从下面①②③中选取两个作为条件,证明另外一个条件成立:
①M在AB上;②PQ//AB;③|MA|=|MB|.
注:若选择不同的组合分别解答,则按第一个解答计分.
(1)右焦点为F(2,0),∴c=2,∵渐近线方程为y=±√3 x,∴b/a=√3,∴b=√3 a,∴c2=a2+b2=4a2=4,∴a=1,∴b=√3.∴C的方程为:x2-y2/3=1;(2)由已知得直线PQ的斜率存在且不为零,直线AB的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB的斜率存在且不为零;若选①③推②,则M为线段AB的中点,假若直线AB的斜率不存在,则由双曲线的对称性可知M在x轴上,即为焦点F,此时由对称性可知P、Q关于x轴对称,与从而x1=x2,已知不符;总之,直线AB的斜率存在且不为零.设直线AB的斜率为k,直线AB方程为y=k(x-2),则条件①M在AB上,等价于y0=k(x0-2)⇔ky0=k2 (x0-2);两渐近线的方程合并为3x2-y2=0,联立消去y并化简整理得:(k2-3) x2-4k2 x+4k2=0设A(x3,y3 ),B(x3,y4 ),线段中点为N(xN,yN ),则xN=(x3+x4)/2=(2k2)/(k2-3),yN=k(xN-2)=6k/(k2-3),设M(x0,y0 ),则条件③|AM|=|BM|等价于(x0-x3 )2+(y0-y3 )2=(x0-x4 )2+(y0-y4 )2,移项并利用平方差公式整理得:(x3-x4 )[2x0-(x3+x4 )]+(y3-y4 )[2y0-(y3+y4 )]=0,[2x0-(x3+x4 )]+(y3-y4)/(x3-x4 ) [2y0-(y3+y4 )]=0,即x0-xN+k(y0-yN )=0,即x0+ky0=(8k2)/(k2-3);由题意知直线PM的斜率为-√3, 直线QM的斜率为√...
查看完整答案设双曲线x2/a2 - y2/b2 =1(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点.已知原点到直线l的距离为/4 c,则双曲线的离心率为【 】
如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段AC 所成的比为λ,双曲线过C,D,E三点,且以A,B为焦点.当2/3≤λ≤3/4 时,求双曲线离心率e的取值范围.
双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,则点P到x轴的距离为________.
设P为双曲线x2/4 - y2=1上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是____________.
设F1,F2为椭圆x2/9+y2/4=1的两个焦点,P为椭圆上的一点.已知P,F1,F2是一个直角三角形的上顶点,且|PF1|>|PF2|,求|PF1|/|PF2| 的值.
双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上。若PF1⊥PF2,则点P到x轴的距离为______.
已知双曲线C的焦点为(-2,0)和(2,0),离心率为√2,则C的方程为____________.
设双曲线x²/a² -y²/b² =1(a>0,b>0)的左右焦点分别为F1,F2,过F2作平等于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为______.
设双曲线 C : x2/a2 − y2/b2 = 1 (a > 0, b > 0) 的一条渐近线为 y = x, 则 C 的离心率为______.
已知双曲线 C :x2/6-y2/3=1, 则 C 的右焦点的坐标为_______; C 的焦点到其渐近线的距离是 ______.
在平面直角坐标系 xOy 中, 若双曲线 x2/a2 -y2/5=1 (a > 0) 的一条渐近线方程为 y=/2 x , 则该双曲线的 离心率是_______.
写出与圆x2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程________________.
已知a→=(3,4),b→=(1,0),c→=a→+tb→,若<a→,c→>=<b→,c→>,则t=【 】
设二斜交轴 x 与y 交角为 θ,作一圆使通过 x 轴上之二定点 (a²,0),(b²,0)且与 y 轴相切,求此圆之方程式.
求与 x =0,y = 0,3x +4y - 6 = 0 三线相切之圆的方程
已知向量a ̅=(1,1),b ̅=(1,-1).若(a ̅+λb ̅)⊥(a ̅+μb ̅),则【 】
过点(0,-2)与圆x²+y²-4x-1=0相切的两条直线的夹角为α,则sinα=【 】
已知向量a→,b→满足|a→-b→ |=√3,|a→+b→ |=|2a→-b→|,则|b→ |=________.
已知直线l:x-my+1=0与⨀C:(x-1)²+y²=4交于A,B两点,写出满足“△ABC的面积为8/5”的m的一个值______.