给定双曲线x2-y2/2=1.
(1) 过点A(2,1)的直线l与所给双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程.
(2) 过点B(1,1)能否作直线过点m,使m与所给双曲线交于两点Q1及Q2,且点B是线段Q1Q2的中点?这样的直线m如果存在,求出它的方程;如果不存在,说明理由.
给定双曲线x2-y2/2=1.
(1) 过点A(2,1)的直线l与所给双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程.
(2) 过点B(1,1)能否作直线过点m,使m与所给双曲线交于两点Q1及Q2,且点B是线段Q1Q2的中点?这样的直线m如果存在,求出它的方程;如果不存在,说明理由.
(1)设直线l的方程为y=k(x-2)+1,①代入双曲线方程,得(2-k2)x2+(4k2-2k)x-4k2+4k-3=0.②又设P1 (x1,y1 ),P2 (x2,y2 ),P(,),则x1, x2必须是②的两个实根,所以x1+x2=(4k2-2k)/(k2-2)(k2-2≠0).按题意=1/2 (x1+x2 )=(2k2-k)/(k2-2).因为(,)在直线①上,所以=k(-2)+1=k(-2)+1=2(2k-1)/(k2-2).再由,y ̅的表达式相除后消去k而得所求轨迹的普通方程为...
查看完整答案若双曲线y2-x2/m2 =1(m>0)的渐近线与圆x2+y2-4y+3=0相切,则m=_________.
已知双曲线中心在原点,且一个焦点为F(√7,0),直线y=x-1与其相交于M,N两点,MN的中点横坐标为-2/3,则此双曲线的方程是【 】
双曲线之切线与渐近线相交,试证切点移动其所包围之三角形之面积为常数.
Reduce the hyperbola 4x² - 9y² - 24x + 36y - 36 = 0 to standard form.
于双曲线4/3 (x-2)2-(y+1)2=1中,已知其一直径之斜度为1/3,试求此直径及其共轭直径之方程式,若以此二共轭直径为新坐标轴,试求双曲线之新方程式.
有圆锥曲线方程式为 5x² -4y² - 20x - 24y + 4= 0,试求其中心、焦点、渐近线、准线.
点(3,0)到双曲线x2/16 - y2/9=1的一条渐近线的距离为【 】
双曲线x2/a2 -y2/b2 =1过点(,),离心率为2,则双曲线的解析式为【 】
记双曲线C:x2/a2 -y2/b2 =1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值_________.
双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=3/5,则C的离心率为【 】
已知双曲线y2+x2/m=1的渐近线方程为y=±√3/3 x,则m=__________.
设双曲线 C : x2/a2 − y2/b2 = 1 (a > 0, b > 0) 的一条渐近线为 y = x, 则 C 的离心率为______.
已知双曲线 C :x2/6-y2/3=1, 则 C 的右焦点的坐标为_______; C 的焦点到其渐近线的距离是 ______.
已知平面向量,,(≠0)满足| |=1,| |=2,∙=0,(- )∙=0.记向量在,方向上的投影分别为x,y,-在方向的投影为z,则x2+y2+z2的最小值为________.
在△ABC中,点D在边AB上,BD=2DA.记=m,=n,则=【 】
已知点A(-2,3),B(0,a),若直线AB关于y=a的对称直线与圆(x+3)2+(y+2)2=1存在公共点,则实数a的取值范围为________.
在△ABC中,角A,B,C所对的边分别为a,b,c.已知4a=√5 c,cosC=3/5.(1)求sinA的值;(2)若b=11,求△ABC的面积.
在∆ABC中,a=√6,b=2c,cosC=-1/4.(1)求∠C的大小;(2)求sinB的值;(3)求sin(2A-B)的值.