双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=3/5,则C的离心率为【 】
A、√5/2
B、3/2
C、 √13/2
D、√17/2
双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=3/5,则C的离心率为【 】
A、√5/2
B、3/2
C、 √13/2
D、√17/2
C依题意不妨设双曲线焦点在x轴,设过F1作圆D的切线切点为G,则OG⊥NF1,因为cos∠ F1 NF2=3/5>0,所以N在双曲线的右支,所以|OG|=a,|OF1 |=c,|GF1 |=b,设∠F1 NF2=α,∠F2 F1 N=β,由cos∠ F1 NF2=3/5,即cosα=3/5,则sinα=4/5,sinβ=a/c,cosβ=b/c,在△F2 F1 N中,sin∠ F1 F2 N=sin(π-α-β)=sin(α+β)=sinα cosβ+cosα sinβ=...
查看完整答案若双曲线y2-x2/m2 =1(m>0)的渐近线与圆x2+y2-4y+3=0相切,则m=_________.
记双曲线C:x2/a2 -y2/b2 =1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值_________.
设椭圆C1:x²/a² +y²=1(a>1),C2:x²/4+y²=1的离心率分别为e1,e2,若e2=√3e1,则a=【 】
已知椭圆C:x²/3+y²=1的左、右焦点分别为F1,F2,直线y=x+m与C交于A,B两点,若△F1AB的面积是△F2AB面积的2倍,则m=【 】
已知双曲线C的焦点为(-2,0)和(2,0),离心率为√2,则C的方程为____________.
造型 可以做成美丽的丝带,将其看作图中曲线C的一部分.已知C过坐标原点O,且C上的点满足:横坐标大于-2,到点F(2,0)的距离与到定直线x=a(a<0)的距离之积为4,则【 】
设双曲线x²/a² -y²/b² =1(a>0,b>0)的左右焦点分别为F1,F2,过F2作平等于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为______.
设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】
已知双曲线方程x2/20-y2/5=1,那么它的焦距是【 】
如果曲线x2-y2-2x-2y-1=0经过平移坐标轴后的新方程为x'2-y'2=1,那么新坐标系的原点在原坐标系中的坐标为【 】
如果双曲线x2/64-y2/36=1上一点P到它的右焦点的距离是8,那么点P到它的右准线的距离是【 】
双曲线y2/16 - x2/9=1的准线方程是__________.
双曲线2mx2 - my2 = 2的一条准线是y=1,则m=______.
如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段AC 所成的比为λ,双曲线过C,D,E三点,且以A,B为焦点.当2/3≤λ≤3/4 时,求双曲线离心率e的取值范围.
双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,则点P到x轴的距离为________.
如图,若图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则【 】
如果直线ax+2y+2=0与直线3x-y-2=0平行,那么系数a=【 】
设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3 : 1,在满足条件①②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
设圆过双曲线x2/9 - y2/16=1的一个顶点和-一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是________.
直线x + y - 2 = 0截圆x2 + y2 = 4得到的劣弧所对的圆心角为【 】
过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是【 】
过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是【 】
设A,B是x轴上的两点,点P的横坐标为2且|PA|=|PB|.若直线PA的方程为x-y+1=0,则直线PB的方程是【 】