单项选择(2001年全国统考2001年全国新课程

过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是【 】

A、(x-3)2+(y+1)2=4

B、(x+3)2+(y-1)2=4

C、(x-1)2+(y-1)2=4

D、 (x+1)2+(y+1)2=4

答案解析

C

讨论

若sinθcosθ>0,则θ在【 】

已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数, i为虚数单位,且对于任意复数z,有w=z ̅0∙ z ̅ ,|w|=2|z|.(I)试求m的值,并分别写出x'和y'用x,y表示的关系式.(Ⅱ)将(x,y)作为点P的坐标, (x',y')作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程.(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.

在xOy平面上有一点列P1 (a1,b1 ),P2 (a2,b2 ),…,Pn (an,bn)对每个自然数n,点Pn位于函数y=2000∙(a/10)x (0<a<10)的图像上,且点Pn、点(n,0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形.(I)求点Pn的纵坐标bn的表达式.(Ⅱ)若对每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围.(Ⅲ)设Bn=b1 b2…bn (n∈N).若a取(Ⅱ)中确定的范围内的最小整数,求数列{Bn}的最大项的项数.

根据指令(r,θ)(r≥0,-180°<θ≤180°),机器人在平面上能完成下列动作:先原地旋转角度θ(θ为正时,按逆时针方向旋转θ;θ为负时,按顺时针方向旋转-θ),再朝其面对的方向沿直线行走距离r.(I)现机器人在直角坐标系的坐标原点,且面对x轴正方向.试给机器人下一个指令,使其移动到点(4,4).(Ⅱ)机器人在完成该指令后,发现在点(17,0)处有小球正向坐标原点做匀速直线滚动.已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令(结果精确到小数点后两位).

已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.

已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).当a=1/2时,求函数f(x)的最小值.

如图所示四面体A-BCD中,AB,BC,BD两两互相垂直,且AB=BC=2,E是AC的中点,异面直线AD与BE所成的角大小为arccos /10,求四面体A-BCD的体积.

已知椭圆C的焦点分别为F1(-2,0)和F2(2,0),长轴长为6,设直线y=x+2交椭圆C于A,B两点,求线段AB的中点坐标.

下列命题中正确的命题是【 】

若集合S={y|y=3x,x∈R},T={y|y=x2-1,x∈R},则S∩T是【 】

在△ABC中,角A,B,C所对的边分别为a,b,c.已知sinA:sinB:sinC=2:1:√2,b=√2.(1)求a的值;(2)求cosC的值;(3)求sin⁡(2C-π/6)的值.

已知点A(-2,3),B(0,a),若直线AB关于y=a的对称直线与圆(x+3)2+(y+2)2=1存在公共点,则实数a的取值范围为________.

已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当AC/AB取得最小值时,BD=________.

在△ABC中,sin2C=√3 sinC.(1)求∠C;(2)若b=6,且△ABC的面积为6√3,求△ABC的周长.

我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S=,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边a=√2,b=√3,c=2,则该三角形的面积S=___________.

在△ABC中,角A,B,C所对的边分别为a,b,c.已知4a=√5 c,cos⁡C=3/5.(1)求sin⁡A的值;(2)若b=11,求△ABC的面积.

已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1).一质点从AB的中点P_0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD,DA和AB上的点P2,P3和P4(入射角等于反射角).设P4的坐标为(x4,0).若1<x4<2,则tanθ的取值范围是【 】

直线x-y+m=0(m>0)与圆(x-1)2+(y-1)2=3相交所得的弦长为m,则m=______.

在∆ABC中,a=√6,b=2c,cosC=-1/4.(1)求∠C的大小;(2)求sinB的值;(3)求sin⁡(2A-B)的值.

英:Find the equation to the straight line which passes through the points(2,5)and (0,-7).汉:求过(2,5)和(0,-7)两点的直线方程.