设二斜交轴 x 与y 交角为 θ,作一圆使通过 x 轴上之二定点 (a²,0),(b²,0)且与 y 轴相切,求此圆之方程式.
设(a-1)(b-1)>0,a,b,θ皆为实数,求(a+cosθ)(b+cosθ)/(1+cosθ)之极小值.
在双曲线x2/a2 -y2/b2 =1上意一点 P作切线交此双曲线之两渐近线(asymptotes)在于Q及 R,若 O 为此双曲线之中心,试求 △OQR 外接圆心之轨迹.
设a,b,c三数成调和级数,试证1/a+1/c+1/(a-b)+1/(c-b)=0.
若α=cos20°,b=cos40°,c=cos80°,试求行列式之数值.
若 x³ + 3px² + 3qx +r 及 x² + 2px +q 有一个一次公因子,试问 p,g,r 之间应有何种关系?又若有两个一次公因子,则其关系又若何?
一圆的中心在直线 5x-3y-7=0 上,且经过两圆之交点,求此圆的方程式.
求原点平移至(2,-5)后,曲线7x²+8y²-28x+80y+172=0之方程式.
已知一圆及一直线,求作该圆之切线,使其自切点至该直线间之线段,等于已知长.
设有一三角形ABC:假定A及B两顶为固定不移,其他一C在AC²+BC²=2/5 AB²之条件下运动,则其轨迹为何如?
求已知圆 x²+y² - 6x +4y = 12 之两切方程式,与一已知线 4x + 3y +5=0平行.
已知圆 x2 + y2 −6x = 0, 过点 (1,2) 的直线被该圆所截得的弦的长度的最小值为【 】
设向量 a = (1, −1), b = (m + 1, 2m − 4), 若 a ⊥ b, 则 m =______ .
若过点 (2, 1) 的圆与两坐标轴都相切, 则圆心到直线 2x − y − 3 = 0 的距离为【 】
已知半径为 1 的圆经过点 (3, 4), 则其圆心到原点的距离的最小值为【 】
已知直线 x − y + 8 = 0 和圆 x2 + y2 = r2 (r > 0) 相交于 A, B 两点. 若 |AB| = 6, 则 r 的值为______.
在平面直角坐标系 xOy 中, 已知 P(/2,0), A、 B 是圆 C : x2+(y-1/2)2=36上的两个动点, 满足 P A = P B, 则 △P AB 面积的最大值是______.
如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么【 】。
在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且c=10, cosA/cosB=b/a=4/3, P为△ABC的内切圆上的动点.求点P到顶点A,B,C的距离的平方和的最大值与最小值.
圆C:x2+y2-2x-4y+4=0的圆心到直线3x+4y+4=04的距离d=_____.
如果实数x,y满足等式(x-2)2+y2=3,那么y/x的最大值是【 】
圆x2 + 2x + y2 + 4y - 3 = 0上到直线x + y + 1 = 0的距离为的点共有【 】个。