若过点 (2, 1) 的圆与两坐标轴都相切, 则圆心到直线 2x − y − 3 = 0 的距离为【 】
A、/5
B、2/5
C、3/5
D、4/5
若过点 (2, 1) 的圆与两坐标轴都相切, 则圆心到直线 2x − y − 3 = 0 的距离为【 】
A、/5
B、2/5
C、3/5
D、4/5
B
已知一圆及一直线,求作该圆之切线,使其自切点至该直线间之线段,等于已知长.
设有一三角形ABC:假定A及B两顶为固定不移,其他一C在AC²+BC²=2/5 AB²之条件下运动,则其轨迹为何如?
两树相距 50 尺,在此树距地 5 尺处观他树之树顶与树根适成 90°之角,又观他树顶之仰角为 60°,求他树之高.
求已知圆 x²+y² - 6x +4y = 12 之两切方程式,与一已知线 4x + 3y +5=0平行.
AB 为一圆之一条固定弦,R 是圆上之一运动的点,求三角形 ABR 的垂心的轨迹.
一圆的中心在直线 5x-3y-7=0 上,且经过两圆之交点,求此圆的方程式.
设二斜交轴 x 与y 交角为 θ,作一圆使通过 x 轴上之二定点 (a²,0),(b²,0)且与 y 轴相切,求此圆之方程式.
已知二圆C1:x²+y²-6x=0,C2:x²+y²-4=0,求通过C1,C2之两交点及另一点(2,-2)之圆的方程式.
求圆锥曲线 x² +y² = 49 及 x² +y² - 20y +90 =0之公切线的长.
一动圆与 (x - 2)² +y² =1及 Y 轴皆相切,求动圆圆心之轨迹方程.
求自原点至圆x²+y²-14x+2y+25=0所作的二切线的交角.
二直线x+y+4=0,x-y=0各与圆x²+y²-2x+4y-4=0相交,且所围成之二弓形面积相等,试证明之.
一圆经过两点(2,-3),(-4,-1),而其中心在直线3y+x-18=0上,求圆的方程.
已知一圆经过二圆 x²+y² -2x +3y -7=0及x²+y²+3y -4=0 的交点及点(-2,1),求其方程.