一圆经过两点(2,-3),(-4,-1),而其中心在直线3y+x-18=0上,求圆的方程.
试证arcsinx+arcsiny=arcsin(x+y).
设α,β,γ为三角形内角,求证tg(α/2)∙tg(β/2)+tg(β/2)∙tg(γ/2)+tg(γ/2)∙tg(α/2)=1.
级数1!/102 -2!/103 +3!/104 -⋯是收敛的还是发散的?
将f(x)=x³-3x²+5x+6的根增一常数 ,使变后的方程缺x²项.
若相相之二抛物线具有相同之顶点,且其主轴互相垂直,试证其公切线必与二抛物线各切于其通径之一端.
试证方程 x² + 6xy + 9y² + 4x + 12y -5 = 0 之轨迹为二平行直线.
求自原点至圆x²+y²-14x+2y+25=0所作的二切线的交角.
二直线x+y+4=0,x-y=0各与圆x²+y²-2x+4y-4=0相交,且所围成之二弓形面积相等,试证明之.
已知圆 x2 + y2 −6x = 0, 过点 (1,2) 的直线被该圆所截得的弦的长度的最小值为【 】
若过点 (2, 1) 的圆与两坐标轴都相切, 则圆心到直线 2x − y − 3 = 0 的距离为【 】
如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于y=x对称,那么必有【 】
设圆M的方程为(x-3)2+(y-2)2=2,直线l的方程为x+y-3=0,点P的坐标为(2,1),那么【 】