单项选择(1988年全国统考

设圆M的方程为(x-3)2+(y-2)2=2,直线l的方程为x+y-3=0,点P的坐标为(2,1),那么【 】

A、点P不在圆M上,但在直线l上

B、点P在圆M上,但不在直线l上

C、点P既在圆M上,又在直线l上

D、点P既不在圆M上,也不在直线l上

答案解析

C

讨论

己知单位向量 a, b 的夹角为 45°, ka − b 与 a 垂直, 则 k = ______.

已知半径为 1 的圆经过点 (3, 4), 则其圆心到原点的距离的最小值为【 】

已知正方形 ABCD 的边长为 2, 点 P 满足 =1/2(+) ,则|| =______ ; · =______ .

在 △ABC 中, a + b = 11, 再从条件 ①、条件 ② 这两个条件中选择一个作为已知, 求:(I) a 的值;(II) sin C 和 △ABC 的面积.条件 ①: c = 7, cos A = -1/7;条件 ②: cos A = 1/8, cos B = 9/16.注: 如果选择条件 ① 和条件 ② 分别解答, 按第一个解答计分.

已知直线 x − y + 8 = 0 和圆 x2 + y2 = r2 (r > 0) 相交于 A, B 两点. 若 |AB| = 6, 则 r 的值为______.

如图, 在四边形 ABCD 中, ∠B = 60º, AB = 3, BC = 6, 且 =λ, ·= -3/2, 则实数 λ 的值为_____, 若 M, N 是线段 BC 上的动点, 且 || = 1, 则· 的最小值为______.

在 △ABC 中, 角 A, B, C 所对的边分别为 a, b, c. 已知 a = 2√2, b = 5, c = .(I) 求角 C 的大小;(II) 求 sin A 的值;(III) 求 sin⁡(2A+π/4) 的值.

设 k ∈ N∗, 已知平面向量 a1, a2, b1, b2, · · · , bk 两两不同, |a1 − a2| = 1. 对于任意 i = 1, 2, j = 1, 2, 3,· · · , k, |ai − bj| ∈ {1, 2}, 则 k 的最大值是_______________.

已知单位向量 e1, e2 满足|e1-e2 |≤, 设 a = e1 + e2, b = 3e1 + e2, 向量 a, b 的夹角为 θ, 则 cos2θ的最小值为_______.

在锐角 △ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 2bsinA − a = 0.(I) 求角 B;(II) 求 cosA + cosB + cosC 的取值范围.