设圆M的方程为(x-3)2+(y-2)2=2,直线l的方程为x+y-3=0,点P的坐标为(2,1),那么【 】
A、点P不在圆M上,但在直线l上
B、点P在圆M上,但不在直线l上
C、点P既在圆M上,又在直线l上
D、点P既不在圆M上,也不在直线l上
设圆M的方程为(x-3)2+(y-2)2=2,直线l的方程为x+y-3=0,点P的坐标为(2,1),那么【 】
A、点P不在圆M上,但在直线l上
B、点P在圆M上,但不在直线l上
C、点P既在圆M上,又在直线l上
D、点P既不在圆M上,也不在直线l上
C
己知单位向量 a, b 的夹角为 45°, ka − b 与 a 垂直, 则 k = ______.
已知半径为 1 的圆经过点 (3, 4), 则其圆心到原点的距离的最小值为【 】
已知正方形 ABCD 的边长为 2, 点 P 满足 =1/2(+) ,则|| =______ ; · =______ .
已知直线 x − y + 8 = 0 和圆 x2 + y2 = r2 (r > 0) 相交于 A, B 两点. 若 |AB| = 6, 则 r 的值为______.
已知单位向量 e1, e2 满足|e1-e2 |≤, 设 a = e1 + e2, b = 3e1 + e2, 向量 a, b 的夹角为 θ, 则 cos2θ的最小值为_______.
在锐角 △ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 2bsinA − a = 0.(I) 求角 B;(II) 求 cosA + cosB + cosC 的取值范围.
在平面直角坐标系 xOy 中, 已知 P(/2,0), A、 B 是圆 C : x2+(y-1/2)2=36上的两个动点, 满足 P A = P B, 则 △P AB 面积的最大值是______.
如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么【 】。
在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且c=10, cosA/cosB=b/a=4/3, P为△ABC的内切圆上的动点.求点P到顶点A,B,C的距离的平方和的最大值与最小值.
圆C:x2+y2-2x-4y+4=0的圆心到直线3x+4y+4=04的距离d=_____.
如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于y=x对称,那么必有【 】
若斜率为√3的直线与y轴交于点A,与圆x2+(y-1)2=1相切与点B,则|AB|=_______.
写出与圆x2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程________________.
设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为______________.