如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么【 】。
A、F=0,G≠0,E≠0
B、E=0,F=0,G≠0
C、G=0,F=0,E≠0
D、G=0,E=0,F≠0
如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么【 】。
A、F=0,G≠0,E≠0
B、E=0,F=0,G≠0
C、G=0,F=0,E≠0
D、G=0,E=0,F≠0
C
【解析】
由题意知该圆圆心在y轴上,∴ G=0,E≠0,又经过原点,故F=0.
数值X={(2n+1)π,n是整数}与数集Y={(4k±1)π,k是整数}之间的关系是【 】。
已知a,b为实数,并且e<a<b,其中e是自然对数的底,证明 ab>ba.
如图,已知椭圆长轴|A1A2 |=6,焦距|F1F2 |=4,过椭圆焦点F1作一直线,交椭圆于两点M,N,设∠F2F1M=α(0≤α<π),当α取什么值时,|MN|等于椭圆短轴的长?
如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上;M是侧棱SC上的一点,使截面MAB与底面所成的角等于∠NSC,求证:SC垂直于截面MAB.
当实数t取什么值时,复数z=+i的辐角主值θ适合0≤θ≤π/4 ?
一个小组共有10名同学,其中4名是女同学,6名是男同学. 要从小组内选出3名代表,其中至少1名女同学,一共有多少种选法?
己知单位向量 a, b 的夹角为 45°, ka − b 与 a 垂直, 则 k = ______.
△ABC 中, sin2A − sin2B − sin2C = sinBsinC.(1) 求 A;(2) 若 BC = 3, 求 △ABC 周长的最大值.
已知单位向量 a, b 的夹角为 60°, 则下列向量中, 与 b 垂直的是【 】
在平面内, A, B 是两个定点, C 是动点. •= 1, 则点 C 的轨迹为【 】
点 (0, −1) 到直线 y = k(x + 1) 距离的最大值为【 】
在 △ABC 中, cosC =2/3, AC = 4, BC = 3, 则 tanB =【 】
已知向量 a, b 满足 |a| = 5, |b| = 6, a · b = −6, 则 cos⟨a, a + b⟩ =【 】
设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为______________.
若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=【 】
已知平面直角坐标系中的点集Q={(x,y)|(x-k)2+(y-k2)2=4|k,k∈z}.①存在直线l与Q没有公共点,且Q中存在两点在l的两侧;②存在直线l经过Q中的无数个点则【 】
已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0.当直线l被C截得的弦长为2√3时,a=【 】
直线x-y+m=0(m>0)与圆(x-1)2+(y-1)2=3相交所得的弦长为m,则m=______.
设圆 x² +y² = a²交横轴于 A、B 二点,自圆上任意一点 Q 作切线,自 A 作直线垂直于切线与 BQ 交于 P,求 P之轨迹.
求原点平移至(2,-5)后,曲线7x²+8y²-28x+80y+172=0之方程式.
AB 为一圆之一条固定弦,R 是圆上之一运动的点,求三角形 ABR 的垂心的轨迹.
一圆的中心在直线 5x-3y-7=0 上,且经过两圆之交点,求此圆的方程式.
设二斜交轴 x 与y 交角为 θ,作一圆使通过 x 轴上之二定点 (a²,0),(b²,0)且与 y 轴相切,求此圆之方程式.