单项选择(2020年全国Ⅲ(理)

在 △ABC 中, cosC = 2/3 , AC = 4, BC = 3, 则 cosB =【 】

A、1/9

B、1/3

C、1/2

D、2/3

答案解析

A

讨论

已知向量 a, b 满足 |a| = 5, |b| = 6, a · b = −6, 则 cos⟨a, a + b⟩ =【 】

在一组样本数据中, 1, 2, 3, 4 出现的频率分别为 p1, p2, p3, p4, 且=1, 则下面四种情形中, 对应样本的标准差最大的一组是【 】

复数1/(1-3i) 的虚部是【 】

已知集合 A = {(x, y) | x, y ∈ N∗, y ⩾ x} , B = {(x, y) | x + y = 8 }, 则 A ∩ B 中元素的个数为【 】

设 a, b, c ∈ R, a + b + c = 0, abc = 1.(1) 证明: ab + bc + ca < 0;(2) 用 max{a, b, c} 表示 a, b, c 的最大值, 证明: max{a, b, c} ⩾.

在直角坐标系 xOy 中, 曲线 C 的参数方程为 (t 为参数且 t ≠ 1), C 与坐标轴交于 A, B 两点.(1) 求 |AB|;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 求直线 AB 的极坐标方程.

己知椭圆 C : x2/25 + y2/m2 = 1 (0 < m < 5) 的离心率为 , A, B 分别为 C 的左、右顶点.(1) 求 C 的方程;(2) 若点 P 在 C 上, 点 Q 在直线 x = 6 上, 且 |BP| = |BQ|, BP⊥BQ, 求 △APQ 的面积.

已知函数 f(x) = x3 − kx + k2.(1) 讨论 f(x) 的单调性;(2) 若 f(x) 有三个零点, 求 k 的取值范围.

如图, 在长方体 ABCD − A1B1C1D1 中, 点 E, F 分别在棱 DD1, BB1 上, 且 2DE = ED1, BF = 2FB1.(1) 证明: 当 AB = BC 时, EF ⊥ AC;(2) 证明: 点 C1 在平面 AEF 内.

某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到公园锻炼的人次, 整理数据得到下表 (单位: 天):(1) 分别估计该市一天的空气质量等级为 1, 2, 3, 4 的概率;(2) 求一天中到该公园锻炼的平均人次的估计值 (同一组中的数据用改组区间的中点值为代表);(3) 若某天的空气质量等级为 1 或 2, 则称这天“空气质量好” ; 若某天的空气质量等级为 3 或 4, 则称这天“空气质量不好” . 根据所给数据, 完成下列的 2 × 2 列联表, 并根据列联表, 判断是否有 95% 的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

在△ABC中,已知a=3,b=2c.(1)若A=2π/3,求S△ABC.(2) 若2sinB-sinC=1,求C△ABC.

记△ABC的三个内角分别为A,B,C,其对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为S1,S2,S3,已知S1-S2+S3=√3/2,sin⁡B=1/3.(1)求△ABC的面积;(2)若sin⁡A sin⁡C=√2/3,求b.

我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S=,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边a=√2,b=√3,c=2,则该三角形的面积S=___________.

在△ABC中,角A,B,C所对的边分别为a,b,c.已知4a=√5 c,cos⁡C=3/5.(1)求sin⁡A的值;(2)若b=11,求△ABC的面积.

已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1).一质点从AB的中点P_0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD,DA和AB上的点P2,P3和P4(入射角等于反射角).设P4的坐标为(x4,0).若1<x4<2,则tanθ的取值范围是【 】

在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南θ(θ=arccos⁡(√2/10))方向300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.问几小时后该城市开始受到台风的侵袭?

在∆ABC中,a=√6,b=2c,cosC=-1/4.(1)求∠C的大小;(2)求sinB的值;(3)求sin⁡(2A-B)的值.

函数f(x)=a-√3tan2x在闭区间[-π/6,b]上的最大值为7,最小值为3,则a×b的值为【 】

设A,B,C与a,b,c依次为一三角形之三角与三边,试证a/(b+c)=

英:Show how to describe a triangle having given its angles and its perimeter.汉:己知三角形三角及周长,解此三角形.