A,B,C are the angles of a triangle, prove that tanA+tanB+tanC=tanAtanBtanC.
A,B,C are the angles of a triangle, prove that tanA+tanB+tanC=tanAtanBtanC.
暂无答案
已知f(x)=3sinx+2,对任意的x1∈[0,π/2],都存在x2∈[0,π/2],使得f(x1)=2f(x2+θ)+2成立,则下列选中θ可能的值是【 】
(tg(-120°)∙cos(-240°)∙cos480°)/(tg(-60°)∙sin(-105°))
设f(x)=sin4x-sinxcosx+cos4x,则f(x)的值域是__________________.
记函数f(x)=cos(ωx+φ) (ω>0,0<φ<π)的最小正周期为T,若f(T)=√3/2,x=π/9为f(x)的零点,则ω的最小值为____________.
函数f(x)=cos2x-sin2x+1的周期为________.
已知x∈(-π/2,0),cosx=4/5,则tan2x=【 】
已知△ABC,若对任意t∈R,|(BA)→-t(BC)→ |≥|(AC)→|,则△ABC一定为【 】。
已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当AC/AB取得最小值时,BD=________.
记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinC sin(A-B)=sinBsin(C-A).(1)若A=2B,求C;(2)证明:2a2=b2+c2.
在△ABC中,sin2C=√3 sinC.(1)求∠C;(2)若b=6,且△ABC的面积为6√3,求△ABC的周长.
在△ABC中,角A,B,C所对的边分别为a,b,c.已知4a=√5 c,cosC=3/5.(1)求sinA的值;(2)若b=11,求△ABC的面积.
在∆ABC中,a=√6,b=2c,cosC=-1/4.(1)求∠C的大小;(2)求sinB的值;(3)求sin(2A-B)的值.
过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是【 】
已知向量=(-1,2),=(3,m),若⊥,则m=________.
若向量a=(1,1),b=(1,-1),c=(-1,2),则c=【 】
设A,B是x轴上的两点,点P的横坐标为2且|PA|=|PB|.若直线PA的方程为x-y+1=0,则直线PB的方程是【 】
设坐标原点为O,抛物线y2=2x与过焦点的直线交于A,B两点,则∙=【 】
已知O为坐标原点,点P1(cosα,sinα),P2(cosβ,-sinβ),P3(cos(α+β),sin(α+β) ),A(1,0),则【 】
曲线y=(2x-1)/(x+2)在点(-1,-3)处的切线方程为__________.