我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S=,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边a=√2,b=√3,c=2,则该三角形的面积S=___________.
我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S=,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边a=√2,b=√3,c=2,则该三角形的面积S=___________.
/4
【解析】
根据“三斜求积”公式:S===/4
已知向量a=(2,1),b=(-2,4),则|a-b|=【 】
若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=【 】
在△ABC中,AC=3,BC=4,∠C=90°.P为△ABC所在平面内的动点,且PC=1,则(PA)⋅(PB)的取值范围是【 】
设二斜交轴 x 与y 交角为 θ,作一圆使通过 x 轴上之二定点 (a²,0),(b²,0)且与 y 轴相切,求此圆之方程式.
已知向量a ̅=(1,1),b ̅=(1,-1).若(a ̅+λb ̅)⊥(a ̅+μb ̅),则【 】
已知向量a→,b→满足a→+b→=(2,3),a→-b→=(-2,1),则|a→ |²-|b→ |²=【 】
在平面内, A, B 是两个定点, C 是动点. •= 1, 则点 C 的轨迹为【 】