单项选择(2022年全国乙·文

已知向量a=(2,1),b=(-2,4),则|a-b|=【 】

A、2

B、3

C、4

D、5

答案解析

D

【解析】

因为a-b=(2,1)-(-2,4)=(4,-3),

所以|a-b |==5.

讨论

设(1+2i)a+b=2i,其中a,b为实数,则【 】

集合M={2,4,6,8,10},N={x|-1<x<6},则M∩N=【 】

已知a,b,c为正数,且a3/2+b3/2+c3/2=1.证明:(1)abc≤1/9;(2) a/(b+c)+b/(a+c)+c/(a+b)≤1/(2).

在直角坐标系xOy中,曲线C的方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立坐标系,已知直线l的极坐标方程为ρsin⁡(θ+π/3)+m=0.(1) 写出l的直角坐标方程;(2) 若l与C有公共点,求m的取值范围.

已知函数f(x)=ln⁡(1+x)+axe-x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(-1,0),(0,+∞)各恰有一个零点,求a的取值范围.

已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A(0,-2),B(3/2,-1)两点.(1)求E的方程;(2)设过点P(1,-2)的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足(MT)→=(TH)→.证明:直线HN过定点.

某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m2)和材积量(单位:m3),得到如下数据:并计算得xi2 =0.038,yi2 =1.6158,xiyi=0.2474.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数r= ,≈1.377.

如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点. (1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.

记△ABC的内角A,B,C的对边分别为a,b,c,已知sin⁡Csin⁡( A-B)=sin⁡Bsin⁡(C-A).(1)证明:2a2=b2+c2;(2)若a=5,cos⁡A=25/31,求△ABC的周长.

已知x=x1和x=x2分别是函数f(x)=2ax-e⁡x2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是____________.