问答题(2022年全国乙·理2022年全国乙·文

在直角坐标系xOy中,曲线C的方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立坐标系,已知直线l的极坐标方程为ρsin⁡(θ+π/3)+m=0.

(1) 写出l的直角坐标方程;

(2) 若l与C有公共点,求m的取值范围.

答案解析

(1)由ρ sin⁡(θ+π/3)+m=0可得ρ(sinθ cos⁡π/3+cosθ sin⁡π/3 )+m=0,即ρ(1/2 sinθ+√3/2 cosθ)+m=0,1/2 y+√3/2 x+m=0,故l的方程为√3 x+y+2m=0.(2)由得,x=√3...

查看完整答案

讨论

如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A,B为端点的曲线段C上的任意一点到l2的距离与点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.

某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虛轴)旋转所成的曲面,其中A,A'是双曲线的顶点,C,C是冷却塔上口直径的两个端点,B,B'是下底直径的两个端点,已知AA'=14 m, CC'=18 m,BB'=22 m,塔高20 m.(Ⅰ)建立坐标系并写出该双曲线方程;(Ⅱ)求冷却塔的容积(精确到10m3 ,塔壁厚度不计,π取3.14).

在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程ρ=2cosθ.(1)将C的极坐标方程化为直角坐标方程;(2)设点A的直角坐标为(1,0),M为C上的动点,点P满足=,写出P的轨迹C1的参数方程,并判断C与C1是否有公共点.

已知曲线 C : mx2 + ny2 = 1. 【 】

Find the equation in polar coordinates of the straight line which is perpendicular to the polar axes at a distance of 5 units from the pole.

已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为【 】

已知集合S={s│s=2n+1,n∈Ζ},T={t|t=4n+1,n∈Ζ},则S∩T=【 】

如图,四棱锥P-ABCD 的底面是矩形,PD⊥底面ABCD,PD = DC = 1,M 为 BC 的中点,且 PB⊥AM.(1) 求 BC;(2) 求二面角A-PM-B的正弦值.

已知z=1-2i,且z+az ̄+b=0,其中a,b为实数,则【 】

设2(z+z ̅)+3(z - z ̅)=4+6i,则z=【 】

曲线的参数方程是(t是参数,t≠0),它的普通方程是【 】

在直角坐标系xOy中,曲线C1的参数方程为,(t为参数),曲线C2的参数方程为,(s为参数).(1)写出C1的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C3的极坐标方程为2cosθ-sinθ=0,求C3与C1交点的直角坐标,及C3与C2交点的直角坐标.

在直角坐标系 xOy 中, 曲线 C1 的参数方程为 (t 为参数). 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 曲线 C2 的极坐标方程为 4ρcosθ−16ρsinθ + 3 = 0.(1) 当 k = 1 时, C1 是什么曲线?(2) 当 k = 4 时, 求 C1 与 C2 的公共点的直角坐标.

已知 C1, C2 的参数方程分别为 C1 :(θ为参数), C2 : (t 为参数) ,(1) 将 C1, C2 的参数方程化为普通方程;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 设 C1, C2 的交点为 P , 求圆心在极轴上, 且经过极点和 P 的圆的极坐标方程.

设直线(l)的参数方程是 (t是参数)椭圆(E)的参数方程是 (θ是参数)问:a,b应满足什么条件,使得对于任意m值来说,直线(l)与椭圆(E)总有公共点?

在平面直角坐标系内,下述方程表示什么曲线?画出它的图形.

在直角坐标系xOy中,参数方程(其中t参数)表示的曲线是【 】

椭圆的两个焦点坐标是【 】

圆锥曲线的焦点坐标是________.

直线y=2x-1/2与曲线(φ为参数)的交点坐标是________.