单项选择(2021年全国乙·理

已知集合S={s│s=2n+1,n∈Ζ},T={t|t=4n+1,n∈Ζ},则S∩T=【 】

A、Φ

B、S

C、T

D、Z

答案解析

C

讨论

记函数f(x)=cos⁡(ωx+φ) (ω>0,0<φ<π)的最小正周期为T,若f(T)=√3/2,x=π/9为f(x)的零点,则ω的最小值为____________.

记△ABC的内角A,B,C的对边分别为a,b,c,已知sin⁡Csin⁡( A-B)=sin⁡Bsin⁡(C-A).(1)证明:2a2=b2+c2;(2)若a=5,cos⁡A=25/31,求△ABC的周长.

某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m2)和材积量(单位:m3),得到如下数据:并计算得xi2 =0.038,yi2 =1.6158,xiyi=0.2474.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数r= ,≈1.377.

已知等比数列{an}的前3项和为168,a2-a5=42,则a6=【 】

已知z=1-2i,且z+az ̄+b=0,其中a,b为实数,则【 】

嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{bn}:b1=1+ ,b2=1+,b3=1+,…,依此类推,其中αk∈N* (k=1,2,⋯).则【 】

某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜 概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则【 】

已知x=x1和x=x2分别是函数f(x)=2ax-e⁡x2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是____________.

在正方体ABCD-A1B1C1D1中,E,F分别为AB,BC的中点,则【 】

已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则f(k)【 】