集合{1,2,3}的子集总共有【 】个
A、7
B、8
C、6
D、5
设集合A={0,-a},B={1,a-2,2a-2},若A⊆B,则a=【 】
设S,T是两个非空集合,且S⊈T,T⊈S,令X=S∩T,那么S∪X=【 】
若集合A={1,2,m},其中m为实数.令B={a²|a∈A},C=A∪B.若C的所有元素之和为6,则C的所有元素之积为________.
设含有10个元素的集合的全部子集数为S,其中由个元素组成的子集数为T,则T/S的值为________.
已知集合 A = {(x, y) | x, y ∈ N∗, y ⩾ x} , B = {(x, y) | x + y = 8 }, 则 A ∩ B 中元素的个数为【 】
某中学的学生积极参加体育锻炼, 其中有 96% 的学生喜欢足球或游泳, 60% 的学生喜欢足球, 82% 的学生喜欢游泳, 则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是【 】
已知全集I=N, 集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则【 】
已知集合S={s│s=2n+1,n∈Ζ},T={t|t=4n+1,n∈Ζ},则S∩T=【 】
给出20个数87 91 94 88 93 91 89 87 92 8690 92 88 90 91 86 89 92 95 88它们的和是【 】
已知x1>0,x≠1,且xn+1=,(n=1,2,⋯).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.
试问数列:lg100,lg(100sinπ/4),lg(100sin2π/4),⋯,lg(100sinn-1π/4),前多少项的和的值最大?并求出这大值(这里取lg2=0.301)
设直线(l)的参数方程是 (t是参数)椭圆(E)的参数方程是 (θ是参数)问:a,b应满足什么条件,使得对于任意m值来说,直线(l)与椭圆(E)总有公共点?
画出极坐标方程(ρ-2)(θ-π/4)=0(ρ>0)的曲线.
如图,已知圆心为O、半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l向右移动时,取弧的长为2/3AP,直线PC与直线AO交于点M.又知当AP=3π/4时,点P的速度为v,求这时点M的速度.
已知复数z=/2 - 1/2 i,ω=/2+/2 i.复数,z2ω3在复数平面上所对应的点分别为P,Q.证明△OPQ是在等腰直角三角形(其中O为原点).
若正数a,b满足ab=a+b+3,则ab的取值范围是__________.
设复数z=3cosθ+i∙sinθ.求函数y=θ-argz(0<θ<π/2)的最大值以及对应的θ值.
已知复数z1=i(1-i)3.(Ⅰ)求argz1及|z1|;(Ⅱ)当复数z满足|z|=1,求|z - z1|的最大值.