已知复数z1=i(1-i)3.
(Ⅰ)求argz1及|z1|;
(Ⅱ)当复数z满足|z|=1,求|z - z1|的最大值.
如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=1/2. (I)求四棱锥S-ABCD的体积;(Ⅱ)求面SCD与面SBA所成二面角的正切值.
圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为__________.
设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=________.
双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,则点P到x轴的距离为________.
若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是________.
一间民房的屋顶有如图三种不同的盖法:①单向倾斜; ②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P1,P2,P3. 若屋顶斜面与水平面所成的角都是α,则【 】
复数z=-3(cos π/5 - isin π/5)( i是虚数单位)的三角形式是【 】
在复平面内,把复数3-i对应的向量按顺序时针方向旋转π/3,所得向量对应的复数是【 】
设复数z=3cosθ+i∙sinθ.求函数y=θ-argz(0<θ<π/2)的最大值以及对应的θ值.
已知复数z=/2 - 1/2 i,ω=/2+/2 i.复数,z2ω3在复数平面上所对应的点分别为P,Q.证明△OPQ是在等腰直角三角形(其中O为原点).
在复平面上,一个正方形的四个顶点按照逆时针方向依次为Z1,Z2,Z3,O(其中O为原点),已知Z2对应复数z2=1+i,求Z1和Z3对应的复数.
已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.
已知函数f(x)=(x2+2x+a)/x,x∈[1,+∞).当a=1/2时,求函数f(x)的最小值.
如图所示四面体A-BCD中,AB,BC,BD两两互相垂直,且AB=BC=2,E是AC的中点,异面直线AD与BE所成的角大小为arccos /10,求四面体A-BCD的体积.
已知椭圆C的焦点分别为F1(-2,0)和F2(2,0),长轴长为6,设直线y=x+2交椭圆C于A,B两点,求线段AB的中点坐标.
用总长14.8m的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长0.5m,那么高多少时容器的面积容积最大?并求出它的最大容积。
如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段AC 所成的比为λ,双曲线过C,D,E三点,且以A,B为焦点.当2/3≤λ≤3/4 时,求双曲线离心率e的取值范围.