圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为__________.
四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有【 】
3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有【 】
某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要, 软件至少买3片,磁盘至少买2盒,则不同的选购方式共有【 】
设一班有学生 40 人中有甲乙二生,今选四人为代表,问:(1).甲乙均被选共有几种方法?(2).甲乙均不被选共有几种方法?
平面上,四条平行直线与另外五条平行直线互相垂直,则它们构成的矩形共有______个(结果用数值表示).
从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙电视机各1台,则不同的取法共有【 】种。
在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共________种(用数字作答)。
某学校开设了4门体育类选修课和4门艺术类选修课, 学生需从这8门课中选修2门或3门课, 并且每类选修课至少选修1门, 则不同的选课方案共有 ______种(用数字作答).
如图,在三角形ABC中∠BAC=60°,BD平分∠ABC,交AC于D,CE平分∠ACB交AB于E,BD和CE交于F,则∠EFB=【 】
设 AD 为 ∠ABC 之中线;∠ADB 之平分线交 AB 于E,∠ADC 之平分线交AC 于F,试证 EF// BC.
若三角形的两边不等,它的对不等边的两角也必不等,并且大角必对大边.
△ABC 之边 AC 之三等分点之中,设近于 A 之点为 D,而 BC 之中点为 E时,则 AE 为 BD 所二等分.
试证: 直角三角形之弦上正方形之面积,与其他两边之平方形面积之和相等.
证明 △ABC 中过 B,C 二顶点之二中线等长,则 △ABC 为等腰,并证明其逆定理.
设G为半径为R的圆,G1,G2,⋯,Gn为半径为r的圆,已知G1,G2,⋯,Gn均外切于G,对于i=1,2,⋯,n-1,Gi与Gi+1外切,且Gn与G1外切,则下列叙述正确的有【 】
从半圆之直径 AB 两端各引此半圆弦 AC,BD交于 E,求证: AC·AE+BD·BE = AB².
两圆外切,其半径各为R和r,设两圆之外公切线之交角为θ,试证 sinθ=.
于圆内接四边形内,若两对角线成垂直,求证对角线交点与一边中点之距离等于自圆心至对边之距离.
证明:对于一组共轴圆 (co-axial circles) 一定点之诸极线 (polars) 必通过一定点,且一定直线之诸极 (poles) 必在一直线上.
设R为三角形之外接圆半径,试证 acosA+bcosB+ccosC = 4RsinAsinBsinC.
AO 为圆之半径,过垂直于此之直径上一点 B,引任意弦 BP,从此弦之一端P 引切线 PC 与OB 之延线会于 C,证 CB =CP.
设二圆之连心线交一圆于 A,B 两点,交第二圆于 D,C 二点,又交二圆之一外公切线于 P 点,设在连心线上,点 A 距 P 最近,点 D 距 P 最远,试证:PA· PD = PB·PC.