设一班有学生 40 人中有甲乙二生,今选四人为代表,问:
(1).甲乙均被选共有几种方法?
(2).甲乙均不被选共有几种方法?
设x,y,z为任意三个角,求证:sinxsin(y-z)cos(y+z-x)+sinysin(z-x)cos(z+x-y)+sinzsin(x-y)cos(x+y-z)=0
设x,y,z为任意三个角,求证:sinx+siny+sinz-sin(x+y+z)=4 sin(x+y)/2 sin(y+z)/2 sin(z+x)/2
设 ABC 为一直角三角形,A 为直角,A 之平分线与 BC 交于 D,与此三角形之外接圆交于 B.求证: △ABC 之面积 =1/2 AD×AE.
将 81 分为两整数,其一为 8 之倍数,其他为 5 之倍数.
圆之直径 AB 上任意取 P 点,又 CD 与直径平行,求证 AP² + BP²=CP² + DP².
于 A,B,C 三阵地测得敌机之仰角为 60°,45°,45°,今 B 地在 A 地正北 3000尺,C 地在 A 地之正西 4000 尺,求敌机之高,并讨论之.
某赛季足球比赛的计分规则是:胜一场,的3分;平一场,得1分;负一场,得0分.一球对打完15场,积33分.若不考虑顺序,该队胜、负、平的情况共有【 】
已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组成共有__________种可能(用数字作答).
将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有【 】
在区间[2022,4482]中,仅包含数字0,2,3,4,6,7(可重复)的四位整数的个数为__________.
某公司财务部有2名男员工3 名女员工,销售部有4 名男员1名女员工,现要从中选2名男员工、1名女员工组成工作小组,并要求每部门至少有1名员工入选,则工作小组的构成方式有【 】种。
由于疫情防控,电影院要求不同家庭之间至少隔一个座位,同一个家庭的成员要相连,两个家庭去看电影,一家3人,一家2人,现有一排7个相连的座位,符合要求的做法有【 】种