证明题(1947年中山大学

圆之直径 AB 上任意取 P 点,又 CD 与直径平行,求证 AP² + BP²=CP² + DP².

答案解析

暂无答案

讨论

于 A,B,C 三阵地测得敌机之仰角为 60°,45°,45°,今 B 地在 A 地正北 3000尺,C 地在 A 地之正西 4000 尺,求敌机之高,并讨论之.

作一正方形,令其四边分别经过四已知点.

圆内接四边形 ABCD 内,∠A = 90°,AB = a,BC = b,其面积为 c²,求CD,DA 及圆半径之长.

解无理方程式+=,并就其结果讨论之.

设a1,a2,a3,⋯,an成调和级数,试证:a1 a2+a2 a3+a3 a4+⋯+an-1 an=(n-1) a1 an

设于椭圆上之 M(acosΦ,bsinΦ) 点,引与圆心 O之联线 OM,再由 M 点引正交于椭圆长轴之线 MP,复由 P引与 OM 正交之线 PQ.(1).求当 M 点沿圆线移动时 Q 点之轨迹.(2).讨论此轨迹之形状,并绘图以明之.

设有等边双曲线 (equilateral hyperbola) xy =1.今于其上取三点 A,B,C 联成三角形,而 A,B,C 之横标 (abscissa) 依次为 a,b,c.(1).求证过 △ABC 三顶点作向对边之垂线会于一点(2).求出三垂线之交点坐标,并证明此交点在双曲线上.

试述无穷级数为收敛或发散之定义 (definition of convergence or divergence)并讨论普遍项 (general term) 如下之二无穷级数,何时为收?何时为发散?(1) Un=xn+1 [log⁡(n+1) ]q(log 表以e 为底之对数)(2) Un=xn (cosn⁡θ+cosn-1⁡θ sinθ+cosn-2⁡θ sin2⁡θ+⋯+sinn⁡θ )(0<θ<π/4)

已知齐次方程组式中A,B,C为三参数.(1)求此方程组x=y=z=0之一组解答外,有其他解答时A,B,C间之关系.(2)求证A+B+C=π时,x,y,z恰为一三角形之三边.

设a,b,c为方程式x³+px+q=0之三根,Sn=an+bn+cn.(1)展开下列行列式为p,q之函数∆=(2)表明∆>0时,a,b,c为三个不同实根;∆<0时,a,b,c三根中有一为实根,其余为二相配虚根;∆=0时,a,b,c为三实根且至少有二根相等.

内接于圆之平行四边形为矩形,其对角线通过圆心,试证明之.

于三角形 ABC之BC边上任取X点作ABX及ACX两圆.(1)求证此两圆直径之比为AB:AC;(2)若BX:XC=m:n,试示①(m+n)cotAXC=ncotB-mcotC.②(m+n)2 AX2=(m+n)(mb2+nc2 )-mna2,其中a=BC,b=CA,c=AB.

证明:对于一组共轴圆 (co-axial circles) 一定点之诸极线 (polars) 必通过一定点,且一定直线之诸极 (poles) 必在一直线上.

设R为三角形之外接圆半径,试证 acosA+bcosB+ccosC = 4RsinAsinBsinC.

AO 为圆之半径,过垂直于此之直径上一点 B,引任意弦 BP,从此弦之一端P 引切线 PC 与OB 之延线会于 C,证 CB =CP.

沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,(AB) ̂是以O为圆心,OA为半径的圆弧,C是AB的中点,D在(AB) ̂上,CD⊥AB.“会圆术”给出(AB) ̂的弧长的近似值s的计算公式:s=AB+CD2/OA.当OA=2,∠AOB=60°时,s=【 】

过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程为____________.

如图,AD=BC=6,AB=20,∠ABC=∠DAB=120°,O为AB中点,曲线CMD上所有的点到O的距离相等,MO⊥AB,P为曲线CM上的一动点,点Q与点P关于OM对称.(1)若P在点C的位置,求∠POB的大小; (2)求五边形MQABP面积的最大值.

Suppose a convex pentagon ABCDE such that BC=DE.If there exists a point T inside ABCDE suchthat TB=TD TC=TE and ∠ABT=∠TEA. AB meet CD and CT at point P and Q respectively, withP,B,A,Q in this order on the same line. AE meet CD and DT at point R and S respectively, with R,E,A,S in this order on the same line.Prove that P,S,Q,R are on the same circle.译文:设凸五边形ABCDE满足BC=DE.若在ABCDE内存在一点T使得TB=TD,TC=TE且∠ABT= ∠TEA.直线AB分别与直线CD和CT交于点P和Q,且P,B,A,Q在同一直线上按此顺序排列;直线AE分别与直线CD和DT交于点R和S,且R,E,A,S在同一直线上按此顺序排列.证明:P,S,Q,R 四点共圆.

如图所示,在△ABC中,H是垂心.以H为圆心,过点A的圆与边AC,AB分别相交于不同于A的另外两点D,E.△ADE的垂心是H',AH'的延长线与DE相交于点F.点P在四边形BCDE内部,满足△PDE∽△PBC(顶点按对应顺序排列).设直线HH',PF相交于点K,证明:A,H,P,K四点共圆.