关注优题吧,注册平台账号.
圆之直径 AB 上任意取 P 点,又 CD 与直径平行,求证 AP² + BP²=CP² + DP².
暂无答案
于 A,B,C 三阵地测得敌机之仰角为 60°,45°,45°,今 B 地在 A 地正北 3000尺,C 地在 A 地之正西 4000 尺,求敌机之高,并讨论之.
作一正方形,令其四边分别经过四已知点.
圆内接四边形 ABCD 内,∠A = 90°,AB = a,BC = b,其面积为 c²,求CD,DA 及圆半径之长.
解无理方程式+=,并就其结果讨论之.
设a1,a2,a3,⋯,an成调和级数,试证:a1 a2+a2 a3+a3 a4+⋯+an-1 an=(n-1) a1 an
设于椭圆上之 M(acosΦ,bsinΦ) 点,引与圆心 O之联线 OM,再由 M 点引正交于椭圆长轴之线 MP,复由 P引与 OM 正交之线 PQ.(1).求当 M 点沿圆线移动时 Q 点之轨迹.(2).讨论此轨迹之形状,并绘图以明之.
设有等边双曲线 (equilateral hyperbola) xy =1.今于其上取三点 A,B,C 联成三角形,而 A,B,C 之横标 (abscissa) 依次为 a,b,c.(1).求证过 △ABC 三顶点作向对边之垂线会于一点(2).求出三垂线之交点坐标,并证明此交点在双曲线上.
试述无穷级数为收敛或发散之定义 (definition of convergence or divergence)并讨论普遍项 (general term) 如下之二无穷级数,何时为收?何时为发散?(1) Un=xn+1 [log(n+1) ]q(log 表以e 为底之对数)(2) Un=xn (cosnθ+cosn-1θ sinθ+cosn-2θ sin2θ+⋯+sinnθ )(0<θ<π/4)
已知齐次方程组式中A,B,C为三参数.(1)求此方程组x=y=z=0之一组解答外,有其他解答时A,B,C间之关系.(2)求证A+B+C=π时,x,y,z恰为一三角形之三边.
设a,b,c为方程式x³+px+q=0之三根,Sn=an+bn+cn.(1)展开下列行列式为p,q之函数∆=(2)表明∆>0时,a,b,c为三个不同实根;∆<0时,a,b,c三根中有一为实根,其余为二相配虚根;∆=0时,a,b,c为三实根且至少有二根相等.
内接于圆之平行四边形为矩形,其对角线通过圆心,试证明之.
于三角形 ABC之BC边上任取X点作ABX及ACX两圆.(1)求证此两圆直径之比为AB:AC;(2)若BX:XC=m:n,试示①(m+n)cotAXC=ncotB-mcotC.②(m+n)2 AX2=(m+n)(mb2+nc2 )-mna2,其中a=BC,b=CA,c=AB.
证明:对于一组共轴圆 (co-axial circles) 一定点之诸极线 (polars) 必通过一定点,且一定直线之诸极 (poles) 必在一直线上.
设R为三角形之外接圆半径,试证 acosA+bcosB+ccosC = 4RsinAsinBsinC.
AO 为圆之半径,过垂直于此之直径上一点 B,引任意弦 BP,从此弦之一端P 引切线 PC 与OB 之延线会于 C,证 CB =CP.
沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,(AB) ̂是以O为圆心,OA为半径的圆弧,C是AB的中点,D在(AB) ̂上,CD⊥AB.“会圆术”给出(AB) ̂的弧长的近似值s的计算公式:s=AB+CD2/OA.当OA=2,∠AOB=60°时,s=【 】
过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程为____________.
如图,AD=BC=6,AB=20,∠ABC=∠DAB=120°,O为AB中点,曲线CMD上所有的点到O的距离相等,MO⊥AB,P为曲线CM上的一动点,点Q与点P关于OM对称.(1)若P在点C的位置,求∠POB的大小; (2)求五边形MQABP面积的最大值.
Suppose a convex pentagon ABCDE such that BC=DE.If there exists a point T inside ABCDE suchthat TB=TD TC=TE and ∠ABT=∠TEA. AB meet CD and CT at point P and Q respectively, withP,B,A,Q in this order on the same line. AE meet CD and DT at point R and S respectively, with R,E,A,S in this order on the same line.Prove that P,S,Q,R are on the same circle.译文:设凸五边形ABCDE满足BC=DE.若在ABCDE内存在一点T使得TB=TD,TC=TE且∠ABT= ∠TEA.直线AB分别与直线CD和CT交于点P和Q,且P,B,A,Q在同一直线上按此顺序排列;直线AE分别与直线CD和DT交于点R和S,且R,E,A,S在同一直线上按此顺序排列.证明:P,S,Q,R 四点共圆.
如图所示,在△ABC中,H是垂心.以H为圆心,过点A的圆与边AC,AB分别相交于不同于A的另外两点D,E.△ADE的垂心是H',AH'的延长线与DE相交于点F.点P在四边形BCDE内部,满足△PDE∽△PBC(顶点按对应顺序排列).设直线HH',PF相交于点K,证明:A,H,P,K四点共圆.
Homologous sides of two similar polygons have the ratio of 5 to 9 , the sum of the areas is 212 sq. ft. Find the area of each figure.
Twos tations,A and B on opposite side of a mountain, are both visible from a third station C. The distance AC=3m.CB=5m and the angle ACB=60°. Find the distance between A and B.
Two straight roads intersect at an angle of 30°. If two automobiles start at the same time at the junction, one at the rate of 60 miles an hour and the other atthe rate of 40 miles an hour, how far apart will they be in 15 minutes?
一定点 D在 AB 及 AC 两直线间,求作过 D至 AB、AC 两线之直线,并 D为所作线之三等分点之一点,并证有二此等线.
n 多边形诸角之和=______.
过一已知点,作直线分已知等腰梯形为两等积形.
以 n 角形之顶点为顶点,而不是 n 角形之边为边之三角形共有若干?
路旁有塔 CD,塔底 D 与路最近处为路上之 A 点.于路上 B 点测得塔顶 C之仰角为 α,又测得 BC 与路成角β .已知 AD =l,求塔高.
设ABCD为一平行四边形,AC为对角线,由B作任意直线各交AC、CD及AD于F、G及E,求证EF·FG=BF².
设有一三角形,其底为 7 cm,高为 5 cm,用圆规及尺作一正方形,其面积与此相等者.