证明题(2022年8月3日东南地区

如图所示,在△ABC中,H是垂心.以H为圆心,过点A的圆与边AC,AB分别相交于不同于A的另外两点D,E.△ADE的垂心是H',AH'的延长线与DE相交于点F.点P在四边形BCDE内部,满足△PDE∽△PBC(顶点按对应顺序排列).设直线HH',PF相交于点K,证明:A,H,P,K四点共圆.

答案解析

设AF的延长线与⊙H相交于点A'.作△AHA'的外接圆ω.设直线HH'与ω相交于除H以外的另一点K'.先证明K'在△PDE的外接圆上.由HA=HA'与圆周角定理可得:∠HAH'=∠AA'H=∠AK'H.故△HAH'∽△HK'A,因此HA²=HH'·HK'.而HD=HE=HA,故HD²=HE² = HH'·HK'于是△HDH'∽△HK'D,△HEH'∽△HK'E,进而∠DK'E=∠HK'D+∠HK'E=∠HDH'+∠HEH'=∠DH'E-∠DHE=2∠BAC-(180°-∠BAC)=3∠BAC-180°.设BD,CE相交于点X,由密克点的知识可知,△XDE,△XBC的外接圆相交于除X以外的另一点P.注意到AB=BD,AC=C...

查看完整答案

讨论

圆Γ的圆心为I.凸四边形ABCD满足:线段AB,BC,CD和DA都与Γ相切.设Ω是三角形AIC的外接圆. BA往A方向的延长线交Ω于点X,BC往C方向的延长线交Ω于点Z,AD往D方向的延长线交Ω于点Y,CD往D方向的延长线交Ω于点T.证明:AD+DT+TX+XA=CD+DY+YZ+ZC.

如图,AB是⊙O的直径,CB是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.

已知:如图,MN为圆的直径,P、C为圆上两点,连PM、PN,过C作MN的垂线与MN、MP和NP的延长线依次相交于A、B、D,求证:AC2=AB·AD.

有一个圆内接三角形ABC,∠A的平分线交BC于D,交外接圆于E,求证:AD·AE=AC·AB.

如图所示,O是△ABC的内心,∠BOC=100°,则∠BAC=______度.

沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,(AB) ̂是以O为圆心,OA为半径的圆弧,C是AB的中点,D在(AB) ̂上,CD⊥AB.“会圆术”给出(AB) ̂的弧长的近似值s的计算公式:s=AB+CD2/OA.当OA=2,∠AOB=60°时,s=【 】

过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程为____________.

两圆外切,其半径各为R和r,设两圆之外公切线之交角为θ,试证 sinθ=.

于圆内接四边形内,若两对角线成垂直,求证对角线交点与一边中点之距离等于自圆心至对边之距离.

于三角形 ABC之BC边上任取X点作ABX及ACX两圆.(1)求证此两圆直径之比为AB:AC;(2)若BX:XC=m:n,试示①(m+n)cotAXC=ncotB-mcotC.②(m+n)2 AX2=(m+n)(mb2+nc2 )-mna2,其中a=BC,b=CA,c=AB.

Let n be a positive integer. A“Northern European Square Matrix (NESM) is an n×n square containing all the integers from 1 to n²,so that there is exactly one number in each grid.The two different grids are neighbours if they share a common edge.A grid is called a "valley”if the integer in it in smaller than the integers in all the neighbours of the grid. An "uphill path”is a sequence containing one or more grids satisfying:(i)the frist grid of the sequence is a valley,(ii) each subsequent grid in the sequence is the neighbour of its previous grid,(iii) the integers in the girds of the sequence is incremented.Figure out the minimum possible value of the number of uphill paths in a NESM which should be represented by a function of n.译文:令n为一个正整数,一个“北欧方阵”是一个包含1至n²所有整数的n×n的方格表,使得每个方格中恰有一个数字。两个相异方格如果有公共边,称它们是相邻的。如果一个方格内的数字比所有相邻方格内的数字都小,称其为“山谷”。一条“上坡路径”是一个包含一或多个方格的序列,满足:(1)序列的第一个方格是山谷;(2)序列中随后的每个方格都和前一个方格相邻;(3)序列中方格所写的数字递增。试求一个北欧方阵中山坡路径的最小可能值,以n的函数表示之。

证明:对于一组共轴圆 (co-axial circles) 一定点之诸极线 (polars) 必通过一定点,且一定直线之诸极 (poles) 必在一直线上.

以 n 角形之顶点为顶点,而不是 n 角形之边为边之三角形共有若干?

设R为三角形之外接圆半径,试证 acosA+bcosB+ccosC = 4RsinAsinBsinC.

某城街路为棋盘式,走向南北者有 a 条,而走向东西者有 6 条,一行人欲由西北隅向最短之路走到东南隅,问计共有若干方法?

在△ABC的边AB,AC上各取D,E点,使AD=1/3 AB,AE=1/3 AC,连结BE,CD相交于F点.求证:S△FBC=1/2 S△ABC.

设 △ABC 的重心为 G,BC、CA 的中点为 E、F,设 △ABC 的面积为 K,求△GEF 的面积.

在 △ABC 内作 AE 及 BD,假设 ∠CAE < ∠CBD,∠BAE < ∠ABD,求证 AE> BD.

△ABC 和△A'B'C'中,∠A >∠A’,则 BC >B'C'.

自 △ABC 的顶点 A 引 ∠B 的内外角平分线之垂线,则此两垂足与 AB,AC两边的中点共线.求证之.