三角形ABC中,自A、B两点各作对边垂线,垂足为D、E,设M、N为DE及AB之两中点,证明MN⊥DE.
从山顶D测得地面上同一方向的两点A和B的俯角分别是30°和45°,已知AB=40米,求山高(精确到0.1)
一只船以20海里/小时的速度向正东航行,起初船在A处看见一灯塔B在船的北45°东方向,一小时后船在C处看见这个灯塔在船的北15°东方向,求这时船和灯塔的距离CB.
为了测湖岸边A、B两点的距离,选择一点C,测得CA=50米,CB=30米,∠ACB=120°,求AB.
已知D为△ABC内的一点,AB=AC=1,∠BAC=63°,∠BAD=33°,∠ABD=27°,求DC(精确到小数点后两位,sin27°=0.4540).
如图所示,在锐角△ABC中,AB>AC,H是垂心,AM是中线,BE⊥AC于点E,CF⊥AB于F.点D在BC边上,满足∠CAD=∠BAM且∠ADH=∠MAH,证明:EF平分线段AD.