问答题(1977年北京市

为了测湖岸边A、B两点的距离,选择一点C,测得CA=50米,CB=30米,∠ACB=120°,求AB.

参考答案

关键词

数学;平面几何;三角形;距离;余弦定理;知识;选择;由余;cos;

有一个圆内接三角形ABC,∠A的平分线交BC于D,交外接圆于E,求证:AD·AE=AC·AB.

一只船以20海里/小时的速度向正东航行,起初船在A处看见一灯塔B在船的北45°东方向,一小时后船在C处看见这个灯塔在船的北15°东方向,求这时船和灯塔的距离CB.

如图,已知正方形ABCD的边CD上任意一点E.延长BC到F,使CF=CD.设BE与DF相交于G,求证:BG⊥DF.

已知:如图,MN为圆的直径,P、C为圆上两点,连PM、PN,过C作MN的垂线与MN、MP和NP的延长线依次相交于A、B、D,求证:AC2=AB·AD.

如图,AB是⊙O的直径,CB是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.

从山顶D测得地面上同一方向的两点A和B的俯角分别是30°和45°,已知AB=40米,求山高(精确到0.1)

我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为S1,小正方形的面积为S2,则S1/S2 =___________.

圆Γ的圆心为I.凸四边形ABCD满足:线段AB,BC,CD和DA都与Γ相切.设Ω是三角形AIC的外接圆. BA往A方向的延长线交Ω于点X,BC往C方向的延长线交Ω于点Z,AD往D方向的延长线交Ω于点Y,CD往D方向的延长线交Ω于点T.证明:AD+DT+TX+XA=CD+DY+YZ+ZC.

设D是锐角三角形ABC(AB>AC)内部一点,使得∠DAB=∠CAD.线段AC上的点E满足∠ADE=∠BCD,线段AB上的点F满足∠FDA=∠DBC,且直线AC上的点X满足CX=BX.设O1和O2分别为三角形ADC和三角形EXD的外心.证明:直线BC,EF和O1O2共点.

魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB=【 】

当m取哪些值时,直线y=x+m与椭圆x2/16+y2/9=1有一个交点?有两个交点?

已知二次函数y=x2﹣6x+5.(1)求出它的图象的顶点坐标和对称轴方程;(2)画出它的图象;(3)分别求出它的图象和x轴、y轴的交点坐标.

某工厂今年七月份的产值为100万元,以后每月产值比上月增加20%,问今年七月份到十月份总产值是多少?

求过两直线x+y-7=0和3x-y-1=0的交点且过(1,1)点的直线方程.

某电管所为实现农业现代化,加強电力网的建设,沿着一条通往农村的新公路栽电线杆,已知一辆汽车每次从电管所运3根电线杆,相邻两根电线杆的距离为50米,汽车往返的总行程是35.5公里,最后一根电线杆与电管所的距离是2450米.(1)问第一根电线杆与电管所的距离是多少?(2)共栽了多少根电线杆?

已知过点P(0,3√2)且斜率为k的直线与圆心在原点半径为3的圆相交于M,N两点.(1)求M,N的坐标;(2)问当M,N重合时,k为何值?此时,过点P的直线和圆的位置关系如何?过样的直线有几条?它们的夹角是多大?

某工厂科研小组,对一项生产工艺过程总结出产量指标函数和消耗指标函数分别为:f1 (x)=ax2+1/2 x+C和f2 (x)=ax2+bx+5/4,且知f1 (-1)=f2 (-1)=f1 (3)=f2 (3)=2.(1)分别求出产量指标函数f1 (x)和消耗指标函数f2 (x)的具体表达式;(2)问因素x取何值时,f1 (x)和f2 (x)有最大值或最小值,最大值或最小值各是多少?(3)画出所求出的函数的略图.

如图,已知长方体的对角线长为l,它与底面所成的角为α,底面两条对角线的夹角为β.求长方体的积体.

利用积分计算椭圆x2/a2 +y2/b2 =1(a>b>0)所围成的面积.

将函数f(x)=ex展开为x的幂级数,并求出收敛区间.( e=2.718为自然对数)