问答题(1977年北京市

为了测湖岸边A、B两点的距离,选择一点C,测得CA=50米,CB=30米,∠ACB=120°,求AB.

答案解析

由余弦定理可得AB=AC2+BC2 - 2AC·BC·cos∠ACB=70(米)

讨论

对于已知圆,作一外接三角形,与已知三角形相似.

等积各三角形,证明其等腰者周界为极小,当其底相等时.

三角形ABC中,自A、B两点各作对边垂线,垂足为D、E,设M、N为DE及AB之两中点,证明MN⊥DE.

三角形ABC中,其边为a,b,c,内接圆半径为r,试证:a+b+c=2r(cot⁡(A/2)+cot(B/2)+cot(C/2))

CD为直角三角形ABC中斜边AB上的高,已知△ADC,△CBD,△ABC的面积成等比数列,求∠B(用反三角函数表示).

锐角△ABC中,AB>AC,M为其外接圆⊙O的劣弧BC的中点,K为A的对径点,过O作OD∥AM交AB于D,交CA的延长线于E,直线BM交直线CK于P,直线CM交直线BK于Q. 求证:∠OPB+∠OEB=∠OQC+∠ODC.

魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB=【 】

设D是锐角三角形ABC(AB>AC)内部一点,使得∠DAB=∠CAD.线段AC上的点E满足∠ADE=∠BCD,线段AB上的点F满足∠FDA=∠DBC,且直线AC上的点X满足CX=BX.设O1和O2分别为三角形ADC和三角形EXD的外心.证明:直线BC,EF和O1O2共点.

我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为S1,小正方形的面积为S2,则S1/S2 =___________.

从山顶D测得地面上同一方向的两点A和B的俯角分别是30°和45°,已知AB=40米,求山高(精确到0.1)

求作圆,经过一定点,与两定直线相切.

A,B,C 为三定点,求作一圆过 A,B,使从 C 到此圆的切线等于定长.

已知PA,PB,PC为过圆周上点P三弦,PT为圆之切线,设有一直线与PT平行,交PA,PB,PC于A',B',C'三点.求证:PA∙PA'=PB∙PB'=PC∙PC'.

两圆面积比等于它们的半径比.

设 △ABC 是一个圆的内接三角形,过 A 作切线交于 BC 的延长线于 D.证明 △ABD,△ACD 的外接圆直径的比等于 AD:CD.

自 △ABC 的顶点 A 至对边作垂线,自垂足 D 作 AB、AC 过之垂线,其垂足为 E、F,证明 B,E,F,C 共圆.

设O为圆心,AB为弦,延长AB至C,令BC等于圆半径,再引CO交圆于D,求证:∠BOC为∠DOA的1/3.

于任意 △ABC 之各边上向外作等边三角形 BCD,CAE 及 ABF,试证此诸等边三角形的外接圆共点.若此点为 P,则 PA+PB + PC =AD =BE =CF.

给定整数n > 1 .在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司 A 和B,各运营 k 辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站) . A 公司的 k 辆缆车的k个起点互不相同, k 个终点也互不相同,并且起点较高的缆车,它的终点也较高. B 公司的缆车也满足相同的条件.我们称两个车站被某家公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数 k ,使得一定有两个车站被两家公司同时连接.(印度供题)

已知直线 y = kx + b (k > 0) 与圆 x2 + y2 = 1 和圆 (x − 4)2 + y2 = 1 均相切, 则 k = _______, b = _______.