已知直线 y = kx + b (k > 0) 与圆 x2 + y2 = 1 和圆 (x − 4)2 + y2 = 1 均相切, 则 k = _______, b = _______.
已知直线 y = kx + b (k > 0) 与圆 x2 + y2 = 1 和圆 (x − 4)2 + y2 = 1 均相切, 则 k = _______, b = _______.
/3; -2/3
已知圆锥的侧面积 (单位: cm2) 为 2π, 且它的侧面展开图是一个半圆, 则这个圆锥的底面半径 (单位: cm) 为_______.
已知 tanθ = 2, 则 cos2θ = _______, tan(θ − π/4) = _______.
二项展开式 (1 + 2x)5 = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5, 则 a4 = _______, a1 + a3 + a5 = _______.
我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题, 如数列 {n(n+1)/2} 就是二阶等差数列,数列{n(n+1)/2} (n ∈ N∗) 的前 3 项和是________.
已知 a, b ∈ R 且 ab ≠ 0, 若 (x − a)(x − b)(x − 2a − b) ⩾ 0 在 x ⩾ 0 上恒成立, 则【 】
已知点 O(0, 0), A(−2, 0), B(2, 0). 设点 P 满足 |PA| − |PB| = 2, 且 P 为函数 y=3 图像上的点,则 |OP| =【 】
已知等差数列 {an} 的前 n 项和为 Sn, 公差 d≠ 0, a1/d ⩽ 1. 记 b1 = S2, bn+1 = Sn+2 − S2n, n ∈ N∗, 下列不可能成立的是【 】
已知空间中不过同一点的三条直线 l, m, n, 则“l, m, n 在同一个平面”是“l, m, n 两两相交”的【 】
何谓圆:___________________________.
设G为半径为R的圆,G1,G2,⋯,Gn为半径为r的圆,已知G1,G2,⋯,Gn均外切于G,对于i=1,2,⋯,n-1,Gi与Gi+1外切,且Gn与G1外切,则下列叙述正确的有【 】
从半圆之直径 AB 两端各引此半圆弦 AC,BD交于 E,求证: AC·AE+BD·BE = AB².
两圆外切,其半径各为R和r,设两圆之外公切线之交角为θ,试证 sinθ=.
于圆内接四边形内,若两对角线成垂直,求证对角线交点与一边中点之距离等于自圆心至对边之距离.
证明:对于一组共轴圆 (co-axial circles) 一定点之诸极线 (polars) 必通过一定点,且一定直线之诸极 (poles) 必在一直线上.
设R为三角形之外接圆半径,试证 acosA+bcosB+ccosC = 4RsinAsinBsinC.
AO 为圆之半径,过垂直于此之直径上一点 B,引任意弦 BP,从此弦之一端P 引切线 PC 与OB 之延线会于 C,证 CB =CP.
以 n 角形之顶点为顶点,而不是 n 角形之边为边之三角形共有若干?
设二圆之连心线交一圆于 A,B 两点,交第二圆于 D,C 二点,又交二圆之一外公切线于 P 点,设在连心线上,点 A 距 P 最近,点 D 距 P 最远,试证:PA· PD = PB·PC.
圆内接四边形 ABCD 内,∠A = 90°,AB = a,BC = b,其面积为 c²,求CD,DA 及圆半径之长.
圆之直径 AB 上任意取 P 点,又 CD 与直径平行,求证 AP² + BP²=CP² + DP².
A,B,C 为三定点,求作一圆过 A,B,使从 C 到此圆的切线等于定长.
已知PA,PB,PC为过圆周上点P三弦,PT为圆之切线,设有一直线与PT平行,交PA,PB,PC于A',B',C'三点.求证:PA∙PA'=PB∙PB'=PC∙PC'.
设 △ABC 是一个圆的内接三角形,过 A 作切线交于 BC 的延长线于 D.证明 △ABD,△ACD 的外接圆直径的比等于 AD:CD.
自 △ABC 的顶点 A 至对边作垂线,自垂足 D 作 AB、AC 过之垂线,其垂足为 E、F,证明 B,E,F,C 共圆.