A,B,C 为三定点,求作一圆过 A,B,使从 C 到此圆的切线等于定长.
在△ABC的边AB,AC上各取D,E点,使AD=1/3 AB,AE=1/3 AC,连结BE,CD相交于F点.求证:S△FBC=1/2 S△ABC.
在 1,2,···,99,100 一百个数内任意选出五十一个数,证明在此五十一个数内恒可以找到二个数,其中一个数为另一个数的倍数.
若A+B+C =nπ (n 为整数).求证:sin2A + sin2B + sin2C = (-1)n-1 · 4sinA · sinB · sinC
若 kxy - 8x + 9y - 12 = 0 表示二条直线,求 k 值及此二直线所夹的角.
一动圆与 (x - 2)² +y² =1及 Y 轴皆相切,求动圆圆心之轨迹方程.
AO 为圆之半径,过垂直于此之直径上一点 B,引任意弦 BP,从此弦之一端P 引切线 PC 与OB 之延线会于 C,证 CB =CP.
设二圆之连心线交一圆于 A,B 两点,交第二圆于 D,C 二点,又交二圆之一外公切线于 P 点,设在连心线上,点 A 距 P 最近,点 D 距 P 最远,试证:PA· PD = PB·PC.
圆内接四边形 ABCD 内,∠A = 90°,AB = a,BC = b,其面积为 c²,求CD,DA 及圆半径之长.
圆之直径 AB 上任意取 P 点,又 CD 与直径平行,求证 AP² + BP²=CP² + DP².
已知直线 y = kx + b (k > 0) 与圆 x2 + y2 = 1 和圆 (x − 4)2 + y2 = 1 均相切, 则 k = _______, b = _______.
如图,AB是半圆的直径,C是半圆上一点,直线MN切半圆于C点,AM⊥MN于M点,BN⊥MN于N点,CD⊥AB于D点 . 求证:(1) CD=CM=CN;(2) CD2=AM•BN.
设 CEDF 是一个已知圆的内接矩形,过 D 作该圆的切线与 CE 的延长线相交于点 A ,与 CF 的延长线相交于点 B . 求证:BF/AE=BC3/AC3 .