证明题(1949年北京大学

证明:(+1)(+1)⋯(+1)=(-1)/(x-1)

答案解析

暂无答案

讨论

给定整数n≥2,设M0 (x0,y0)是抛物线y2=nx-1与直线y=x的一个交点.试证明对任意正整数m,必存在整数k≥2,使(x0m,y0m)为抛物线y2=kx-1与直线y=x的一个交点.

设f(x)=x2+a,记f1(x)=f(x),fn(x)=f(fn-1(x)),n=2,3,⋯,M={a∈R│对所有正整数n,|fn(0)|≤2}.证明:M=[-2,1/4].

用数学归纳法证明下列恒等式 1³+2³+3³+⋯+n³=[n(n+1)/2]²

用数学归纳法求下列级数1/(1×2)+1/(2×3 )+1/(3×4)+⋯至n项之和.

Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that there is at most one way (up to rotation and refection) to place the elements of S around a circle such that the product of any two neighbours is of the form x2+x+k for some positive integer x. 译文:给定正整数 k,S是一个由有限个奇素数构成的集合.证明:至多只有一种方式(旋转或对称后相同视为同种方式)可以将S中的元素排成一个圆周,且满足任意两个相邻元素的乘积均可以写成x2+x+k的形式 (其中x为正整数) .

设a>2,给定数列{xn},其中x1 = a,xn+1=(xn2)/(2(xn-1)) (n=1,2,…),求证:(1) xn>2,且xn+1/xn < 1(n=1,2,…);(2) 如果a≤3,那么xn ≤ 2+1/2n-1 (n=1,2,…);(3) 如果a>3,那么当n ≥ (lga/3)/(lg4/3)时,必有xn+1<3.

设f(x)=lg (1+2x+⋯+(n-1)x+nx a)/n,其中a是实数,n是任意给定的自然数且n≥2.(Ⅰ)如果f(x)当x∈(-∞,1]时有意义,求a的取值范围;(Ⅱ)如果a∈(0,1],证明:2f(x)<f(2x)当x≠0时成立.

某日温度华氏与摄氏之比若 13:4,问华氏几度?

英:Find the value of , when x=1.汉:当x=1时,求之值.

求4x+49y-28之平方根.

已知{an}是公差为2的等差数列,其前8项的和为64,{bn}是公比大于0的等比数列,b1=4,b3-b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1/bn ,n∈N*(i)证明{cn2-c2n}是等比数列;(ii)证明<2√2.

已知数列{an}满足a1=1,an+1= (n∈N* ).记{an}的前n项和为Sn,则【 】

已知数列{an}的前n项和为Sn,a1=-9/4,且4Sn+1=3Sn-9.(1)求数列{an}的通项;(2)设数列{bn}满足3bn+(n-4) an=0,记{bn}的前n项和为Tn,若Tn<λbn对任意n∈N*恒成立,求λ的范围.

嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{bn}:b1=1+ ,b2=1+,b3=1+,…,依此类推,其中αk∈N* (k=1,2,⋯).则【 】

己知数列{an}各项均为正数,其前n项和Sn满足an⋅Sn=9(n=1,2,⋯).给出下列四个结论:①{an}的第2项小于3; ②{an}为等比数列;③{an}为递减数列; ④{an}中存在小于1/100的项.其中所有正确结论的序号是__________.

已知Q:a1,a2,⋯,ak为有穷整数数列.给定正整数m,若对任意的n∈{1,2,⋯,m},在Q中存在ai,ai+1,ai+2,⋯,ai+j (j≥0),使得ai+ai+1+ai+2+⋯+ai+j=n,则称Q为m-连续可表数列.(1)判断Q:2,1,4是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若Q:a1,a2,⋯,ak为8-连续可表数列,求证:k的最小值为4;(3)若Q:a1,a2,⋯,ak为20-连续可表数列,且a1+a2+⋯+ak<20,求证:k≥7.

已知数列{an}满足a1=1,an+1=an-1/3 an2 (n∈N* ),则【 】

数列{an}中,a1=1,a2=3,若地任意n(n≥2)都存在正整数i(1≤i≤n-1)使得an+1=2an-ai.(1)求a4的所有可能值.(2)命题p:若a1,a2,a3,…,a8成等差数列,则a9<30,证明命题p为真;写出p的逆命题q,并判断q的真假,若命题q为真则证明,若命题q为假,请举出反例.(3)若对任意正整数m,a2m=3m,求数列{an}的通项公式.

(I)设{an}是集合{2t+2s |0≤s<t,s,t∈Z}中所有的数从小到大排列成的数列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,⋯将数列{an}各项按照上小下大,左小右大的原则写成如下的三角形数表:35 69 10 12⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯ ⋯⋯⋯(i)写出这个三角形数表的第四行、第五行各数;(ii)求a100.(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设{bn}是集合{2t+2s+2r |0≤r<s<t,r,s,t∈Z}中所有的数从小到大排列成的数列,已知bk=1160,求k.

设正数数列{an}满足:a1=1+√2且(an-an+1 )(an+an-1-2√n)=2(n≥2).(1)求数列{an}的通项公式;(2)求满足[an ]=2022的所有正整数n构成的集合([x]表示不超过x的最大整数).