设{an}是等差数列, a1=1,Sn是它的前n项和;{bn}是等比数列,其公比的绝对值小于1, Tn 是它的前n项和.如果a3=b2,S5=2T2-6,Tn =9,求{an },{bn}的通项公式.
在等比数列{an}中,a1>1,且前n项和Sn满足Sn=1/a1 ,那么a1的取值范围是【 】
极限(C22+C32+C42+⋯+Cn2)/(n(C21+C31+C41+⋯+Cn1))=【 】
求极限[1/(n2+1)+2/(n2+1)+3/(n2+1)+⋯2n/(n2+1)].
已知等比数列{an}的公比q>1,并且a1=b(b≠0),求(a1+a2+a3+⋯+an)/(a6+a7+a8+⋯+an ).
已知{an}是等比数列,如果a1+a2+a3=18,a2+a3+a4=-9,且Sn=a1+a2+⋯+an,那么Sn 的值等于【 】
若(z-x)2-4(x-y)(y-z)=0,求证:x,y,z成等差数列.
已知{an }为等差数列,{bn}是公比为2的等比数列,且a2-b2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{ k| bk=am+a1,1≤m≤500}中元素个数.
记Sn为数列{an }的前n项和.已知2Sn/n+n=2an+1.(1)证明:{an }是等差数列;(2)若a4,a7,a9成等比数列,求Sn的最小值.
已知等差数列{an}的公差不为零,Sn为其前n项和,若S5=0,则Si (i=0,1,2,…,100)中不同的数值有________个。
等差数列{an}的各项均为正数,首项与公差相等,=2,则a4的值为【 】
Find the sum of the arithmetical series 49,44,39,… to 17 terms.
已知等比数列{an}的前3项和为168,a2-a5=42,则a6=【 】
已知等比数列{an}的前3项和为168,a2-a5=42,则a6=【 】
以三角形各边为直径作圆,试证任意两边上二圆公切线之长为第三边被内切圆切点所分两部分之比例中项.
记Sn为等比数列{an}的前n项和,若S4=-5,S6=21S2,则S8=【 】
设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.
设 {an} 是等比数列, 且 a1 + a2 + a3 = 1, a2 + a3 + a4 = 2, 则 a6 + a7 + a8 =【 】
记 Sn 为等比数列 {an} 的前 n 项和. 若 a5 − a3 = 12, a6 − a4 = 24, 则 Sn/an=【 】