若(z-x)2-4(x-y)(y-z)=0,求证:x,y,z成等差数列.
已知:α,β为锐角,且3sin2α+2sin2β=1 ,3sin2α-2sin2β=0,求证:α+2β=π/2.
已知△ABC三内角的大小成等差数列,tanAtanC=2+,求角A,B,C的大小;又知顶点C的对边c上的高等于4,求三角形各边a,b,c的长.(提示:必要时可验证(1+)2=4+2)
已知log189=a(a≠2),18b=5,求log3645.
如图,AB是半圆的直径,C是半圆上一点,直线MN切半圆于C点,AM⊥MN于M点,BN⊥MN于N点,CD⊥AB于D点 . 求证:(1) CD=CM=CN;(2) CD2=AM•BN.
已知方程 kx2+y2=4 ,其中k为实数。对于不同范围的k值,分别指出方程所代表图形的类型 ,并画出显示其数量特征的草图.
若方程x4-4x3-34x2+ax+b=0之根成等差级数,求a,b及四根.
设{an}为等差数列,bn=,记Sn,Tn分别为{an },{bn}的前n项和,S4=32,T3=16.(1)求{an}的通项公式(2)证明:当n>5时,Tn>Sn.
等差数列{an}满足a2021=a20+a21=1,则a1的值为__________.
记 Sn 为等差数列 {an} 的前 n 项和, 若 a1 = −2, a2 + a6 = 2, 则 S10 = ______.
在等差数列 {an} 中, a1 = −9, a5 = −1. 记 Tn = a1a2 · · · an (n = 1, 2, · · · ), 则数列 {Tn}【 】
已知等差数列 {an} 的前 n 项和为 Sn, 公差 d≠ 0, a1/d ⩽ 1. 记 b1 = S2, bn+1 = Sn+2 − S2n, n ∈ N∗, 下列不可能成立的是【 】
我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题, 如数列 {n(n+1)/2} 就是二阶等差数列,数列{n(n+1)/2} (n ∈ N∗) 的前 3 项和是________.