计算题(1978年全国统考

不查表,求 cos80°cos35°+ cos10°cos55°的值.

答案解析

原式=cos80°cos35°+sin80°sin35°

=cos⁡(80°-35°) 

=cos45° 

= /2 

讨论

求函数y=的定义域.

已知正方形的边长为 a ,求侧面积等于这个正方形的面积、高等于这个正方形边长的直圆柱体的体积

分解因式:x2-4xy+4y2-4z2.

证明:存在正常数c具有卜述性质:对任意整数n>1,以及平面上n个点的集合 S ,若 S中任意两点之间的距离不小于 1 ,则存在一条分离 S 的直线l , 使得 S 中的每个点到直线的距离不小于cn-1/3 . (我们称直线l分离点集 S , 如果某条以S中两点为端点的线段与l相交.)注.如果证明了比cn-1/3 弱的估计cn-α ,会根据α>1/3 的值,适当给分.(中国台湾供题)

有一叠n>1 张卡片.在每张卡片上写有一个正整数.这叠卡片具有如下性质:其中任意两张上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n,使得可以推出所有卡片上的数均相等.(爱沙尼亚供题)

给定整数n > 1 .在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司 A 和B,各运营 k 辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站) . A 公司的 k 辆缆车的k个起点互不相同, k 个终点也互不相同,并且起点较高的缆车,它的终点也较高. B 公司的缆车也满足相同的条件.我们称两个车站被某家公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数 k ,使得一定有两个车站被两家公司同时连接.(印度供题)

There are 4n pebbles of weights 1,2,3,…,4n. Each pebble is coloured in one of n colours and there are four pebbles of each colour. Show that we can arrange the pebbles into two piles so that the following two conditions are both satisfied:● The total weights of both piles are the same.● Each pile contains two pebbles of each colour.有 4n 枚石子,重量分别为 1 , 2 , 3 , … , 4n .每一枚小石子都染了n种颜色之一,使得每种颜色的小石子恰有四枚.证明:可以把这些小石子分成两堆,且满足以下两个条件:● 两堆小石子的总重量相同;● 每堆中每种颜色的小石子各有两枚.(匈牙利供题)

The real numbers a,b,c,d are such that a≥b≥c≥d>0 and a+b+c+d=1.Prove that (a+2b+3c+4d)aabbccdd<1.设实数a、b、c、d满足 a≥b≥c≥d>0 ,且 a+b+c+d=1 . 证明:(a+2b+3c+4d)aabbccdd<1.(比利时供题)

Consider the convex quadrilateral ABCD. The point P is in the interior of ABCD. The following ratio equalities hod:∠PAD:∠PBA:∠DPA=1:2:3=∠CBP:∠BAP:∠BPC.Prove that the following three lines meet in a point : the internal bisectors of angles ∠ADP and ∠PCB and the perpendicular bisector of segment AB.设P是凸四边形ABCD内部一点,且满足:∠PAD:∠PBA:∠DPA=1:2:3=∠CBP:∠BAP:∠BPC.证明:∠ADP的内角平分线、∠PCB的内角平分线和线段AB的中垂线,三线共点。 (波兰供题)

已知关于 x 的函数 y = f(x), y = g(x) 与 h(x) = kx + b (k, b ∈ R) 在区间 D 上恒有 f(x) ⩾ h(x) ⩾ g(x).(1) 若 f(x) = x2 + 2x, g(x) = −x2 + 2x, D = (−∞, +∞), 求 h(x) 的表达式;(2) 若 f(x) = x2 − x + 1, g(x) = k ln x, h(x) = kx − k, D = (0, +∞), 求 k 的取值范围;(3) 若 f(x) = x4−2x2, g(x) = 4x2−8, h(x) = 4(t3−t)x−3t4+2t2 (0 < |t| ⩽), D = [m, n] ⊂ [-, ].求证: n − m ⩽.

已知函数f(x)=sin⁡(ωx+φ),如图A,B是直线y=1/2与曲线y=f(x)的两个交点,若|AB|=π/6,则f(π)=________.

已知命题p:若α,β为第一象限角,且α>β,则tanα>tanβ.能说明p为假命题的一组α,β的值为α=______,β=______.

已知函数f(x)=sinωx+sin2x,其中ω∈N+,ω≤2023.若f(x)<2恒成立,则满足题设的常数ω的个数为________.

已知 α ∈ (0, π), 且 3cos2α − 8cosα = 5, 则 sinα =【 】

若 α 为第四象限角, 则【 】

已知函数 f(x) = sin2xsin2x.(1) 讨论 f(x) 在 (0,π)上的单调性;(2) 证明: |f(x)| ⩽ 3/8;(3) 证明: sin2xsin22xsin24x . . . sin22nx ⩽ 3n/4n .

已知 2tanθ − tan(θ + π/4) = 7, 则 tanθ =【 】

2020 年 3 月 14 日是全球首个国际圆周率日 (π Day). 历史上, 求圆周率的方法有多种, 与中国传统数学中 的“割圆术”相似, 数学家阿尔 • 卡西的方法是: 当正整数 n 充分大时, 计算单位圆的内接正 6n 边形的周长和外 切正 6n 边形 (各边均与圆相切的正 6n 边形) 的周长, 将它们的算术平均数作为 2π 的近似值. 按照阿尔 • 卡西的 方法, π 的近似值的表达式是【 】

已知函数 f(x)=sin⁡(x+π/3). 给出下列结论:① f(x) 的最小正周期为 2π;② f(π/2) 是 f(x) 的最大值;③ 把函数 y = sin x 的图像上所有点向左平移 π/3个单位长度, 可得到函数 y = f(x) 的图像.其中所有正确结论的序号是【 】.

已知 f(x) = sinωx, ω> 0.(1) T = 4π, 求ω及f(x)=1/2时的解集;(2) ω = 1, g(x)=[f(x)]2-f(-x)f(π/2-x), 求 x∈[0,π/4] 时 g(x) 的值域.