问答题(2020年江苏省

已知关于 x 的函数 y = f(x), y = g(x) 与 h(x) = kx + b (k, b ∈ R) 在区间 D 上恒有 f(x) ⩾ h(x) ⩾ g(x).

(1) 若 f(x) = x2 + 2x, g(x) = −x2 + 2x, D = (−∞, +∞), 求 h(x) 的表达式;

(2) 若 f(x) = x2 − x + 1, g(x) = k ln x, h(x) = kx − k, D = (0, +∞), 求 k 的取值范围;

(3) 若 f(x) = x4−2x2, g(x) = 4x2−8, h(x) = 4(t3−t)x−3t4+2t2 (0 < |t| ⩽), D = [m, n] ⊂ [-, ].

求证: n − m ⩽.

答案解析

(1) 由 f(x)=g(x) 得 x=0. 又f' (x)=2x+2,g' (x)=-2x+2, 所以 f' (0)=g' (0)=2.所以, 函数 h(x) 的图像为过原点, 斜率为 2 的直线, 所以 h(x)=2x. 经检验, h(x)=2x 符合题意.(2) h(x)-g(x)=k(x-1-lnx).设 φ(x)=x-1-lnx, 则 φ' (x)=1-1/x=(x-1)/x; φ(x)≥φ(1)=0. 所以当 h(x)-g(x)≥0 时, k≥0.由f(x)-h(x)=x2-x+1-(kx-k)=x2-(k+1)x+(1+k)≥0,得:当 x=k+1≤0 时, f(x) 在 (0,+∞) 上递增, 所以 f(x)=1+k≥0, 所以k=-1.当 k+1>0 时, ∆≤0, 即 (k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1<k≤3.综上, k ∈ [0, 3] .(3) 因为 f(x)=x4-2x2, 所以 f' (x)=4x3-4x=4x(x+1)(x-1)...

查看完整答案

讨论

在平面直角坐标系 xOy 中, 已知椭圆 E : x2/4+y2/3=1 的左、右焦点分别为 F1、F2, 点 A 在椭圆 E 上且在第一象限内, AF2⊥F1F2, 直线 AF1 与椭圆 E 相交于另一点 B.(1) 求 △AF1F2 的周长;(2) 在 x 轴上任取一点 P , 直线 AP 与椭圆 E 的右准线相交于点 Q, 求 ∙的最小值;(3) 设点 M 在椭圆 E 上, 记 △OAB 与 △MAB 的面积分别为 S1, S2, 若 S2 = 3S1, 求点 M 的坐标.

某地准备在山谷中建一座桥梁, 桥址位置的竖直截面图如图所示: 谷底 O 在水平线 MN 上, 桥 AB 与 MN平行, OO′为铅垂线 (O′在 AB 上), 经测量, 左侧曲线 AO 上任一点 D 到 MN 的距离 h1 (米) 与 D 到 OO′ 的距离 a (米) 之间满足关式 h1=1/40 a2 ; 右侧曲线 BO 上任一点 F 到 MN 的距离 h2 (米) 与 F 到 OO′的距离 b (米)之间满足关系式 h2=-1/800 b3+6b . 已知点 B 到 OO′的距离为 40 米.(1) 求桥 AB 的长度;(2) 计划在谷底两侧建造平行于 OO′的桥墩 CD 和 EF , CE 为 80 米, 其中 C, E 在 AB 上 (不包括端点), 桥墩 EF 每米造价 k (万元), 桥墩 CD 每米造价 3/2 k (万元) (k > 0), 问 O′E为多少米时, 桥墩 CD 与 EF 的总造价最低?

在 △ABC 中, 角 A、 B、 C 的对边分别为 a、 b、 c. 已知 a = 3, c = , B = 45º. (1) 求 sinC 的值;(2) 在边 BC 上取一点 D, 使得 cos∠ADC =-4/5, 求 tan∠DAC 的值.

在三棱柱 ABC − A1B1C1 中, AB ⊥ AC, B1C ⊥ 平面 ABC, E, F 分别是 AC, B1C 的中点.(1) 求证: EF // 平面 AB1C1;(2) 求证: 平面 AB1C ⊥ 平面 ABB1.

在平面直角坐标系 xOy 中, 已知 P(/2,0), A、 B 是圆 C : x2+(y-1/2)2=36上的两个动点, 满足 P A = P B, 则 △P AB 面积的最大值是______.

在 △ABC 中, AB = 4, AC = 3, ∠BAC = 90º, D 在边 BC 上, 延长 AD 到 P , 使得 AP = 9. 若=m+(3/2-m) (m 为常数), 则 CD 的长度是__________.

已知 5x2y2 + y4 = 1 (x, y ∈ R), 则 x2 + y2 的最小值是________.

设 {an} 是公差为 d 的等差数列, {bn} 是公比为 q 的等比数列. 已知 {an + bn} 的前 n 项和为 Sn = n2 − n + 2n − 1 (n ∈ N∗), 则 d + q 的值是______.

将函数y=3sin⁡(2x+π/4)的图象向右平移 π/6 个单位长度, 则平移后的图像中与 y 轴最近的对称轴的方程是__________.

如图, 六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的. 已知螺帽的底面正六边形边长为 2cm, 高 为 2cm, 内孔半径为 0.5cm, 则此六角螺帽毛坯的体积是 __________cm3.

已知x=x1和x=x2分别是函数f(x)=2ax-e⁡x2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是____________.

已知函数f(x)=ln⁡(1+x)+axe-x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(-1,0),(0,+∞)各恰有一个零点,求a的取值范围.

已知函数f(x)=ax-1/x-(a+1)ln⁡x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.

已知函数f(x)=ex ln⁡( 1+x).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设g(x)=f'(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).

设函数f(x)=e/2x+ln⁡x (x>0).(1)求f(x)的单调区间;(2)已知a,b∈R,曲线y=f(x)上不同的三点(x1,f(x1 )),(x2,f(x2 )),(x_3,f(x_3 ))处的切线都经过点(a,b).证明:(ⅰ)若a>e,则0<b-f(a)<1/2 (a/e-1);(ⅱ)若0<a<e,x1<x2<x_3,则2/e+(e-a)/(6e2 )<1/x1 +1/x_3 <2/a-(e-a)/(6e2 ).(注:e=2.71828⋯是自然对数的底数)

设f(x)=ex-asinx,g(x)=b√x.(1)求函数y=f(x)在(0,f(0))处的切线方程;(2)若y=f(x)与y=g(x)有公共点,ⅰ)当a=0时,求b的取值范围;ⅱ)求证:a2+b2>e.

过点(0,4)作曲线y=x3-x+2的切线,这条切线在x轴上的截距为【 】

求使方程2x3-6x2+k=0恰有2个互异实数解的整数k共有多少个.

点P在直线上运动,t(t≥0)时刻的速度v(t)和加速度a(t)满足以下条件:(1)当0≤t≤2时,v(t)=2t3-8t.(2)当t≥2时,a(t)=6t+4.求点P从t=0到t=3时刻移动的距离.

最高次项系数为1的三次函数f(x)和实数集上的连续函数g(x)满足下列条件,求f(4).(1)对于任意实数x,f(x)=f(1)+(x-1) f' [g(x)],(2)函数g(x)的最小值为5/2,(3) f(0)=-3,f[g(1)]=6.