证明题(2020年江苏省

在三棱柱 ABC − A1B1C1 中, AB ⊥ AC, B1C ⊥ 平面 ABC, E, F 分别是 AC, B1C 的中点.

(1) 求证: EF // 平面 AB1C1;

(2) 求证: 平面 AB1C ⊥ 平面 ABB1.

参考答案

关键词

平面;空间;数学;解析几何;棱柱;abb;中点;求证;在三;空间平面及关系;

日晷是中国古代用来测定时间的仪器, 利用与晷面垂直的晷针投射到晷面的影子来测定时间. 把地球看成一个球 (球心记为 O) , 地球上一点 A 的纬度是指 OA 与地球赤道所在平面所成角, 点 A 处的水平面是指过点 A 且与 OA 垂直的平面. 在点 A 处放置一个日晷, 若晷面与赤道所在平面平行, 点 A 处的纬度为北纬 40°, 则晷针与点 A 处的水平面所成角为【 】

如图所示,为了制作一个圆柱形灯笼,先要制作4 个全等的矩形骨架,总计耗用9.6 米铁丝。 骨架将到柱底面8 等分,再用S 平方米塑輯片制成圆柱的侧面和下底面(不安装上底面).(Ⅰ) 当圆柱底面半径r 为何值时, S 取得最大值? 并求出该最大值(结果精确到0.01 平方米);(Ⅱ) 在灯笼内,以矩形骨架的頂点为端点, 安装一些霓虹灯,当灯笼底面半径为0.3 米时,求图中两根直线型霓虹灯A1B3,A3B5所在异面直线所成角的大小(结果用反三角函数值表示).

如图,设平面AC和BD相交于BC,它们所成的一个二面角为45°,P为面AC内的一点,Q为面BD内的一点.已知直线MQ是直线PQ在平面BD内的射影,并且M在BC上,又设PQ与平面BD所成的角为β,∠CMQ=θ(0°<θ<90°),线段PM的长为a.求线段PQ的长.

在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF中点. 现沿SE、SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G.那么,在四面体S-EFG中必有【 】

如图,正四棱台中,A'D'所在的直线与BB'所在的直线是【 】

如图,已知二面角α-AB-β的平面角是锐角,C是平面α内的一点(它不在棱AB上),点D是点C在平面β上的射影,点E是棱AB上满足∠CEB为锐角的任意一点,那么【 】.

如图,已知圆柱的底面半径是3,高是4,A,B两点分别在两底面的圆周上,并且AB=5,那么直线AB与轴oo'之间的距离等于______.

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, AE 为底面直径, AE = AD. △ABC 是底面的内接正三角形,P 为 DO 上一点, PO = DO.(1) 证明: PA ⊥ 平面 PBC;(2) 求二面角 B − PC − E 的余弦值.

如图, 已知三棱柱 ABC − A1B1C1 的底面是正三角形, 侧面 BB1C1C 是矩形, M, N 分别为 BC, B1C1 的中点, P 为 AM 上一点, 过 B1C1 和 P 的平面交 AB 于 E, 交 AC 于 F .(1) 证明: AA1 // MN, 且平面 A1AMN ⊥ 面 EB1C1F ;(2) 设 O 为 A1B1C1 的中心, 若 AO // 面 EB1C1F , 且 AO = AB, 求直线 B1E 与平面 A1AMN 所成角的正弦值.

如图, 已知三棱柱 ABC − A1B1C1 的底面是正三角形, 侧面 BB1C1C 是矩形, M, N 分别为 BC, B1C1 的中点, P 为 AM 上一点, 过 B1C1 和 P 的平面交 AB 于 E, 交 AC 于 F .(1) 证明: AA1 // MN, 且平面 A1AMN ⊥ 面 EB1C1F ;(2) 设 O 为 △A1B1C1 的中心, 若 AO = AB = 6, AO//平面 EB1C1F , 且 ∠MPN = π/3 , 求四棱锥 B −EB1C1F 的体积.