问答题(2023年北京市

如图,在三棱锥P-ABC中,PA⊥平面ABC,PA=AB=BC=1,PC=√3.

 

(1)求证:BC⊥平面PAB;

(2)求二面角A-PC-B的大小.

答案解析

(1)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,同理PA⊥AB,∴△PAB为直角三角形,又∵PB=√2,BC=1,PC=√3,∴PB²+BC²=PC²,∴△PBC为直角三解形,BC⊥PB,又∵BC⊥PA,PA∩PB=P,∴BC⊥平面PAB.(2)由(1)知,BC⊥AB,以A为原点,AB为x轴,AP为z轴,建立空间直角坐标系,如图:则A(0,0,0),P(0,0,1),C(1,1,0),B(1,0,0),∴(AP)⇀=(0,0,1),(AC)⇀...

查看完整答案

讨论

如图, 三棱台 ABC − DEF 中, 平面 ACFD ⊥ 平面 ABC, ∠ACB = ∠ACD = 45°, DC = 2BC.(I) 证明: EF ⊥ DB;(II) 求 DF 与面 DBC 所成角的正弦值.

在120°的二面角P-α-Q的两个面P和Q内,分别有点A和B . 已知点A和点B到棱α的距离分别为2和4,且线段AB=10.(1) 求直线AB和棱α所成的角;(2) 求直线AB和平面Q所成的角.

已知空间四边形ABCD中AB=BC,CD=DA,M,N,P,Q分别是边AB,BC,CD,DA的中点(如图).求证MNPQ是一个矩形.

两条异面直线,指的是【 】

已知三个平面两两相交,有三条交线.求证这三条交线交于一点或互相平行.

如图所示,为了制作一个圆柱形灯笼,先要制作4 个全等的矩形骨架,总计耗用9.6 米铁丝。 骨架将到柱底面8 等分,再用S 平方米塑輯片制成圆柱的侧面和下底面(不安装上底面).(Ⅰ) 当圆柱底面半径r 为何值时, S 取得最大值? 并求出该最大值(结果精确到0.01 平方米);(Ⅱ) 在灯笼内,以矩形骨架的頂点为端点, 安装一些霓虹灯,当灯笼底面半径为0.3 米时,求图中两根直线型霓虹灯A1B3,A3B5所在异面直线所成角的大小(结果用反三角函数值表示).

在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF中点. 现沿SE、SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G.那么,在四面体S-EFG中必有【 】

在xOy平面上,四边形ABCD的四个顶点坐标依次为(0,0),(1,0),(2,1)及(0,3).求这个四边形绕x轴旋转一周所得到的几何体的体积.

如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A,B的任意一点.求证:平面PAC垂直于平面PBC.

如图,正四棱台中,A'D'所在的直线与BB'所在的直线是【 】

如图,已知正四棱锥ABCD-A1 B1 C1 D1,点E在棱D1 D上,截面EAC//D1 B,且EAC与底面ABCD所成角为45°,AB=a. (Ⅰ)求截面EAC的面积;(Ⅱ)求异面直线A1 B1与AC之间的距离;(Ⅲ)求三棱锥B1-EAC的体积.

如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°. (Ⅰ)证明:C1C⊥BD.(Ⅱ)假设CD=2,CC1=3/2,记面C1BD为α,面CBD为β,求二面角a-BD-β的平面角的余弦值.(Ⅲ)当CD/CC1 的值为多少时,能使A1C⊥平面C1BD?请给出证明.

一间民房的屋顶有如图三种不同的盖法:①单向倾斜; ②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P1,P2,P3. 若屋顶斜面与水平面所成的角都是α,则【 】

2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠穆高峰测量法之一,下图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同水平面上的投影A',B',C'满足∠A' C' B'=45°,∠A' B'C'=60°,由C点测得B点的仰角为15°,BB'与CC'的差为100,由B点测得A点的仰角为45°,则A,C两点到水平面A'B'C'的高度差AA'-CC'约为(≈1.732)【 】

如图,在棱长为2的正方体ABCD-A1 B1 C1 D1中,E为棱BC的中点,F为棱CD的中点.(1)求证:D1 F//平面A1 EC1;(2)求直线AC1与平面A1 EC1所成角的正弦值;(3)求二面角A-A1 C1-E的正弦值.

如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点. (1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.

如图,在三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN.注:如果选择条件①和条件②分别解答,按第一个解答计分.

如图,已知ABCD和CDEF都是直角梯形,AB//DC,DC//EF,AB=5,DC=3,EF=1,∠BAD=∠CDE=60°,二面角F-DC-B的平面角为60°.设M,N分别为AE,BC的中点. (1)证明:FN⊥AD;(2)求直线BM与平面ADE所成角的正弦值.

如图,在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90°.侧棱AA1=2,D,E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G.(I)求A1B与平面ABD所成角的大小(结果用反三角函数值表示);(Ⅱ)求点A1到平面AED的距离.

直三棱柱ABC-A1B1C1中,AA1=AB=AC=2,AA1⊥AB,D为A1B1的中点,E为AA1的中点,F为CD的中点.(1)求证:EF//ABC平面;(2)求直线BE与平面CC1D夹角的正弦值;(3)求平面A1CD与平面CC1D夹角的余弦值.