设点Q关于平面r➝=-(t+p) i➝+tj➝+(1+p)k➝的对称点为S,其中t,p为实数,i➝,j➝,k➝分别为空间坐标系坐标轴正方向的三个单位向量,若点Q与S的位置矢量分别为10i➝+15j➝+20k➝与αi➝+βj➝+γk➝,则以下说法正确的是【 】
A、3(α+β)=-101
B、3(β+γ)=-101
C、3(γ+α)=-86
D、3(α+β+γ)=-121
设点Q关于平面r➝=-(t+p) i➝+tj➝+(1+p)k➝的对称点为S,其中t,p为实数,i➝,j➝,k➝分别为空间坐标系坐标轴正方向的三个单位向量,若点Q与S的位置矢量分别为10i➝+15j➝+20k➝与αi➝+βj➝+γk➝,则以下说法正确的是【 】
A、3(α+β)=-101
B、3(β+γ)=-101
C、3(γ+α)=-86
D、3(α+β+γ)=-121
ABC平面方程为r➝=k➝+t(-i➝+j➝ )+p(-i➝+k➝),即为过点(0,0,1),法向量同时垂直于-i➝+j➝及-i➝+k➝的平面,易知法向量为i➝+j➝+k➝,平面方程为x+y+z=1.即求点(10,15,20)关于平面x+...
查看完整答案如图,四棱锥P-ABCD 的底面是矩形,PD⊥底面ABCD,PD = DC = 1,M 为 BC 的中点,且 PB⊥AM.(1) 求 BC;(2) 求二面角A-PM-B的正弦值.
设z是虚部不为零的复数.若(2+3z+4z2)/(2-3z+4z2)是实数,则|z|2的值为__________.
在复数范围内,方程z ̅-z2=i(z ̅+z2)的解的个数为__________.
设α为正实数,函数f:R→R和g:(α,+∞)→R分别定义为f(x)=sin(πx/12)和g(x)=2ln(√x-√α)/ln(e√x-e√α),则f[g(x)]=__________.
在区间[2022,4482]中,仅包含数字0,2,3,4,6,7(可重复)的四位整数的个数为__________.
设a1,a2,⋯为首项为7,公差为8的等差数列,对于∀n≥1,T1,T2,⋯满足T1=3,Tn+1-Tn=an,则以下选项正确的是【 】
已知平面P1:10x+15y+12z-60=0,P2:-2x+5y+4z-20=0.若存在一个四面体,其中两个面分别位于平面P1和P2上,下面哪条直线可能是该四面体的一条棱【 】
如图,在平行六面体ABCD-A1B1C1D1中,M为AC与BD的交点,若=a,=b,=c,则下列向量中与相等的向量是【 】
在正三棱柱ABC-A1B1C1中,AB=AA1=1,点P满足=λ+μ,其中λ∈[0,1],μ∈[0,1],则【 】
设z是不为0的复数,若(z ̅ )2+1/z2 的实部和虚部均为整数,则|z|的值可能是【 】
计算3/2 cos-1+1/4 sin-1(2√2π)/(2+π2 )+tan-1(√2/π)的值为__________.
关于方程(lnx)1/2/(x[a-(lnx)1/2]2) dx=1,α∈(-∞,0)∪(1,+∞),下列叙述正确的有【 】
函数f,g:R⟶R定义为f(x)=x²+5/12,g(x)=,区域{(x,y)∈R×R||x|≤3/4,0≤y≤min[f(x),g(x)]}的面积为α,则9α的值为________.