不定项选择(2022年印度

设点Q关于平面r=-(t+p) i+tj+(1+p)k的对称点为S,其中t,p为实数,i,j,k分别为空间坐标系坐标轴正方向的三个单位向量,若点Q与S的位置矢量分别为10i+15j+20k与αi+βj+γk,则以下说法正确的是【 】

A、3(α+β)=-101

B、3(β+γ)=-101

C、3(γ+α)=-86

D、3(α+β+γ)=-121

答案解析

ABC平面方程为r➝=k➝+t(-i➝+j➝ )+p(-i➝+k➝),即为过点(0,0,1),法向量同时垂直于-i➝+j➝及-i➝+k➝的平面,易知法向量为i➝+j➝+k➝,平面方程为x+y+z=1.即求点(10,15,20)关于平面x+...

查看完整答案

讨论

如图,以正四棱锥V-ABCD底面中心O为坐标原点建立空间直角坐标系O-xyz,其中Ox//BC,Oy//AB,E为VC中点,正四棱锥底面长为2a,高为h. (Ⅰ)求cos⁡⟨,⟩;(Ⅱ)记面BVC为α,面DVC为β,若∠BED是二面角α-VC-β的平面角,求∠BED.

如图,四棱锥P-ABCD 的底面是矩形,PD⊥底面ABCD,PD = DC = 1,M 为 BC 的中点,且 PB⊥AM.(1) 求 BC;(2) 求二面角A-PM-B的正弦值.

设z是虚部不为零的复数.若(2+3z+4z2)/(2-3z+4z2)是实数,则|z|2的值为__________.

在复数范围内,方程z ̅-z2=i(z ̅+z2)的解的个数为__________.

设α为正实数,函数f:R→R和g:(α,+∞)→R分别定义为f(x)=sin⁡(πx/12)和g(x)=2ln⁡(√x-√α)/ln⁡(e√x-e√α),则f[g(x)]=__________.

在一项传染病研究中,收集了900位患者的样本,发现其中:190人有发热症状,220人有咳嗽症状,220人有呼吸困难症状,330人发热或咳嗽,350人咳嗽或呼吸困难,340人发热或呼吸困难,30人同时出现发热、咳嗽、呼吸困难的症状。从这900人中随机抽取一人,则至少出现一种症状的概率是__________.

在区间[2022,4482]中,仅包含数字0,2,3,4,6,7(可重复)的四位整数的个数为__________.

设l1,l2,⋯,l100是公差为d1的等差数列的前100项,w1,w2,⋯,w100是公差为d2的等差数列的前100项,且d1 d2=10.设Ai表示边长分别为li和wi的矩形的面积,若A51-A50=1000,则A100-A90的值为__________.

设a1,a2,⋯为首项为7,公差为8的等差数列,对于∀n≥1,T1,T2,⋯满足T1=3,Tn+1-Tn=an,则以下选项正确的是【 】

已知平面P1:10x+15y+12z-60=0,P2:-2x+5y+4z-20=0.若存在一个四面体,其中两个面分别位于平面P1和P2上,下面哪条直线可能是该四面体的一条棱【 】

如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC,SC于D,E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.

如图,平面α,β相交于直线MN,点A在平面α上,点B在平面β上,点C在直线MN上,∠ACM=∠BCN=45°,A-MN-B是60°的二面角,AC=1. 求:(1) 点A到平面β的距离;(2) 二面角A-BC-M的大小(用反三角函数表示).

如图,已知ABCD是边长为4的正方形,E,F分别是AB,AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.

如图,在正三角棱柱ABC-A1 B1 C1中,E∈BB1,截面A1 EC⊥侧面AC1 (Ⅰ)求证: BE=EB1;(Ⅱ)若AA1=A1 B1,求平面A1 EC与平面A1 B1 C1所成二面角(锐角)的度数. 注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(Ⅰ)证明:(如图)在截面A1 EC内,过E作EG⊥A1 C,G是垂足. ①∵_________________________________________∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC.②∵_________________________________________.∴BF⊥侧面AC1;得BF//EG,BF、EG确定一个平面,交侧面AC1于FG.③∵_________________________________________∴BF//EG四边形BEGF是平行四边形BF=EG.④∵_________________________________________∴FG//AA1,ΔAA1 C∽ΔFGC.⑤∵_________________________________________∴FG=1/2 AA1=1/2 BB1,即BE=1/2 BB1故BE=EB1.(Ⅱ)解:

如图,已知正四棱锥ABCD-A1 B1 C1 D1,点E在棱D1 D上,截面EAC//D1 B,且EAC与底面ABCD所成角为45°,AB=a. (Ⅰ)求截面EAC的面积;(Ⅱ)求异面直线A1 B1与AC之间的距离;(Ⅲ)求三棱锥B1-EAC的体积.

如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°. (Ⅰ)证明:C1C⊥BD.(Ⅱ)假设CD=2,CC1=3/2,记面C1BD为α,面CBD为β,求二面角a-BD-β的平面角的余弦值.(Ⅲ)当CD/CC1 的值为多少时,能使A1C⊥平面C1BD?请给出证明.

如图,在棱长为2的正方体ABCD-A1 B1 C1 D1中,E为棱BC的中点,F为棱CD的中点.(1)求证:D1 F//平面A1 EC1;(2)求直线AC1与平面A1 EC1所成角的正弦值;(3)求二面角A-A1 C1-E的正弦值.

如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点. (1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.

如图,在三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN.注:如果选择条件①和条件②分别解答,按第一个解答计分.

如图,在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是【 】