单项选择(1992年全国统考

如图,在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是【 】

A、/2

B、/10

C、3/5

D、2/5

答案解析

D

讨论

如图,已知二面角α-AB-β的平面角是锐角,C是平面α内的一点(它不在棱AB上),点D是点C在平面β上的射影,点E是棱AB上满足∠CEB为锐角的任意一点,那么【 】.

如图,四棱锥S-ABCD的底面是边长为1的正方形,侧棱SB垂直于底面,并且SB=,用α表示∠ASD,求sinα的值.

如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC,SC于D,E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.

设点P在有向线段的延长线上,P分所成的比为λ,则【 】

如图,平面α,β相交于直线MN,点A在平面α上,点B在平面β上,点C在直线MN上,∠ACM=∠BCN=45°,A-MN-B是60°的二面角,AC=1. 求:(1) 点A到平面β的距离;(2) 二面角A-BC-M的大小(用反三角函数表示).

如图,已知ABCD是边长为4的正方形,E,F分别是AB,AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.

如图,在棱长为2的正方体ABCD-A1 B1 C1 D1中,E为棱BC的中点,F为棱CD的中点.(1)求证:D1 F//平面A1 EC1;(2)求直线AC1与平面A1 EC1所成角的正弦值;(3)求二面角A-A1 C1-E的正弦值.

如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点. (1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.

如图,在三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN.注:如果选择条件①和条件②分别解答,按第一个解答计分.

如图, 在长方体 ABCD − A1B1C1D1 中, 点 E, F 分别在棱 DD1, BB1 上, 且 2DE = ED1, BF = 2FB1.(1) 证明: 当 AB = BC 时, EF ⊥ AC;(2) 证明: 点 C1 在平面 AEF 内.

如图, 已知三棱柱 ABC − A1B1C1 的底面是正三角形, 侧面 BB1C1C 是矩形, M, N 分别为 BC, B1C1 的中点, P 为 AM 上一点, 过 B1C1 和 P 的平面交 AB 于 E, 交 AC 于 F .(1) 证明: AA1 // MN, 且平面 A1AMN ⊥ 面 EB1C1F ;(2) 设 O 为 A1B1C1 的中心, 若 AO // 面 EB1C1F , 且 AO = AB, 求直线 B1E 与平面 A1AMN 所成角的正弦值.

日晷是中国古代用来测定时间的仪器, 利用与晷面垂直的晷针投射到晷面的影子来测定时间. 把地球看成一个球 (球心记为 O) , 地球上一点 A 的纬度是指 OA 与地球赤道所在平面所成角, 点 A 处的水平面是指过点 A 且与 OA 垂直的平面. 在点 A 处放置一个日晷, 若晷面与赤道所在平面平行, 点 A 处的纬度为北纬 40°, 则晷针与点 A 处的水平面所成角为【 】

如图, 三棱台 ABC − DEF 中, 平面 ACFD ⊥ 平面 ABC, ∠ACB = ∠ACD = 45°, DC = 2BC.(I) 证明: EF ⊥ DB;(II) 求 DF 与面 DBC 所成角的正弦值.

在120°的二面角P-α-Q的两个面P和Q内,分别有点A和B . 已知点A和点B到棱α的距离分别为2和4,且线段AB=10.(1) 求直线AB和棱α所成的角;(2) 求直线AB和平面Q所成的角.

已知空间四边形ABCD中AB=BC,CD=DA,M,N,P,Q分别是边AB,BC,CD,DA的中点(如图).求证MNPQ是一个矩形.

两条异面直线,指的是【 】

已知三个平面两两相交,有三条交线.求证这三条交线交于一点或互相平行.

在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF中点. 现沿SE、SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G.那么,在四面体S-EFG中必有【 】

如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A,B的任意一点.求证:平面PAC垂直于平面PBC.

如图,正四棱台中,A'D'所在的直线与BB'所在的直线是【 】