问答题(1977年河南省

如图,已知长方体的对角线长为l,它与底面所成的角为α,底面两条对角线的夹角为β.求长方体的积体.

答案解析

暂无答案

讨论

向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系的图像如图所示,那么水瓶的形状是【 】

若干毫升水倒人底面半径为2cm的圆柱形器皿中,量得水面的高度为6cm,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是【 】

如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,EF=3/2,EF与面AC的距离为2,则该多面体的体积为【 】

如果圆台的上底面半径为5,下底面半径为R,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=【 】

一个长方体共一顶点的三个面的面积分别是,, ,这个长方体对角线的长是【 】

已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为【 】

已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.

两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π/3,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为【 】

工人师傅要用铁皮做一个上大下小的正四棱台形容器(上面开口),使其容积为208立方分米,高为4分米,上口边长与下底面边长的比为5:2,做这样的容器需要多少平方分米的铁皮?(不计容器的厚度和加工余量,不要求写出已知、求解,直接求解并画图即可)

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, △ABC 是底面的内接正三角形, P 为 DO 上一点, ∠APC = 90°.(1) 证明: 平面 PAB ⊥ 平面 PAC;(2) 设 DO = , 圆锥的侧面积为π, 求三棱锥 P − ABC 的体积.

如图,在正方体ABCD-A1B1C1D1中E,F分别是BB1,CD的中点. (Ⅰ)证明AD⊥D1F;(Ⅱ)求AE与D1F所成的角;(Ⅲ)证明面AED⊥面A1FD1;(Ⅳ)设AA1=2,求三棱锥F-A1ED1的体积VF-A1ED1.

如图,长方体ABCD-A1 B1 C1 D1中,已知AB=BC=2,AA1=3. (1)若P是A1 D1上的动点,求三棱锥C-PAD的体积;(2)求直线AB1与平面ACC1 A1的夹角大小.

在棱长为 10 的正方体 ABCD − A1B1C1D1 中, P 为左侧面 ADD1A1 上一点, 已知点 P 到 A1D1 的距离为 3, 点 P 到 AA1 的距离为 2, 则过点 P 且与 A1C 平行的直线交正方体于 P、 Q 两点, 则 Q 点所在的平面是【 】

如果正方体ABCD-A′B′C′D′的棱长为a,则A′-ABD的体积是【 】

如图已知正方体ABCD-A1 B1 C1 D1,M,N分别是A1 D,D1 B的中点,则【 】

如图,正方体ABCD-A1B1C1D1中,P,Q,R,S分别为棱AB,BC,BB1,CD的中点,连接A1S,B1D.空间任意两点M,N,若线段MN上不存在点在A1S,B1D上,则称MN两点可视,则下列选项中与点D1可视的点为【 】

下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有【 】

由正方体ABCD-A1B1C1D1的顶点A作该正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.

在长方体ABCD-A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则【 】

如图,从一个棱长为6米的正方体中裁去两个相同的正三棱锥,若正三棱锥的边长AB为4√2,则剩余何体的表面积为【 】