问答题(1997年全国统考

如图,在正方体ABCD-A1B1C1D1中E,F分别是BB1,CD的中点.

 

(Ⅰ)证明AD⊥D1F;

(Ⅱ)求AE与D1F所成的角;

(Ⅲ)证明面AED⊥面A1FD1

(Ⅳ)设AA1=2,求三棱锥F-A1ED1的体积VF-A1ED1.

答案解析

(Ⅰ)∵ AC1是正方体,∴AD⊥面DC1又D1 F⊂DC1,∴AD⊥D1 F.(Ⅱ)取AB中点G,连接A1 G,FG. 因为F是CD的中点,所以GE,AD平行且相等,又A1 D1,AD平行且相等,所以GE, A1 D1平行且相等,故GFD1 A1是平行四边形,A1 G//D1 F.设A1 G与AE相交于点H,则∠AHA1是AE与D1 F所成的角,因为E是BB1的中点、所以Rt△A1 AG≅Rt△ABE,∠GA1 A=∠GAH,从而∠AHA1=90°,即直线AE与D1 F所成...

查看完整答案

讨论

如图,在三棱柱ABC-A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN.注:如果选择条件①和条件②分别解答,按第一个解答计分.

如图,已知ABCD和CDEF都是直角梯形,AB//DC,DC//EF,AB=5,DC=3,EF=1,∠BAD=∠CDE=60°,二面角F-DC-B的平面角为60°.设M,N分别为AE,BC的中点. (1)证明:FN⊥AD;(2)求直线BM与平面ADE所成角的正弦值.

如图,在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90°.侧棱AA1=2,D,E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G.(I)求A1B与平面ABD所成角的大小(结果用反三角函数值表示);(Ⅱ)求点A1到平面AED的距离.

直三棱柱ABC-A1B1C1中,AA1=AB=AC=2,AA1⊥AB,D为A1B1的中点,E为AA1的中点,F为CD的中点.(1)求证:EF//ABC平面;(2)求直线BE与平面CC1D夹角的正弦值;(3)求平面A1CD与平面CC1D夹角的余弦值.

如图,在正四棱柱ABCD-A1 B1 C1 D1中,AB=2,AA1=4,点A2,B2,C2,D2分别在棱AA1,BB1,CC1,DD1上,AA2=1,BB2=DD2=2,CC2=3.(1)证明:B2 C2//A2 D2;(2)点P在棱BB1上,当二面角P-A2 C2-D2为150°时,求B2 P.

坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素,安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形,若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD的夹角的正切值均为√14/5,则该五面体的所有棱长之和为【 】

如图,在三棱锥P-ABC中,PA⊥平面ABC,PA=AB=BC=1,PC=√3. (1)求证:BC⊥平面PAB;(2)求二面角A-PC-B的大小.

如图,四棱锥P-ABCD中,PA⊥底面ABCD,PA=AC=2,BC=1,AB=√3. (Ⅰ)若AD⊥PB,证明:AD//平面PBC;(Ⅱ)若AD⊥DC,且二面角A-CP-D的正弦值为√42/7,求AD.

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, AE 为底面直径, AE = AD. △ABC 是底面的内接正三角形,P 为 DO 上一点, PO = DO.(1) 证明: PA ⊥ 平面 PBC;(2) 求二面角 B − PC − E 的余弦值.

如图, 已知三棱柱 ABC − A1B1C1 的底面是正三角形, 侧面 BB1C1C 是矩形, M, N 分别为 BC, B1C1 的中点, P 为 AM 上一点, 过 B1C1 和 P 的平面交 AB 于 E, 交 AC 于 F .(1) 证明: AA1 // MN, 且平面 A1AMN ⊥ 面 EB1C1F ;(2) 设 O 为 △A1B1C1 的中心, 若 AO = AB = 6, AO//平面 EB1C1F , 且 ∠MPN = π/3 , 求四棱锥 B −EB1C1F 的体积.

在棱长为 10 的正方体 ABCD − A1B1C1D1 中, P 为左侧面 ADD1A1 上一点, 已知点 P 到 A1D1 的距离为 3, 点 P 到 AA1 的距离为 2, 则过点 P 且与 A1C 平行的直线交正方体于 P、 Q 两点, 则 Q 点所在的平面是【 】

如果正方体ABCD-A′B′C′D′的棱长为a,则A′-ABD的体积是【 】

如图,长方体ABCD-A1 B1 C1 D1中,已知AB=BC=2,AA1=3. (1)若P是A1 D1上的动点,求三棱锥C-PAD的体积;(2)求直线AB1与平面ACC1 A1的夹角大小.

如图,正方体ABCD-A1B1C1D1中,P,Q,R,S分别为棱AB,BC,BB1,CD的中点,连接A1S,B1D.空间任意两点M,N,若线段MN上不存在点在A1S,B1D上,则称MN两点可视,则下列选项中与点D1可视的点为【 】

下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有【 】

由正方体ABCD-A1B1C1D1的顶点A作该正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.

在长方体ABCD-A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则【 】

如图,从一个棱长为6米的正方体中裁去两个相同的正三棱锥,若正三棱锥的边长AB为4√2,则剩余何体的表面积为【 】

如图,正方体ABCD-EFGH的棱长为2,在正方形ABEF的内切圆上任取一点P1,在正方形BCGF的内切圆上任取一点P2,在正方形EFGH的内切圆上任取一点P3,求|P1 P2 |+|P2 P3 |+|P3 P1 |的最小值与最大值.

如图已知正方体ABCD-A1 B1 C1 D1,M,N分别是A1 D,D1 B的中点,则【 】