单项选择(1991年全国统考

如果三棱锥S-ABC的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S在底面射影O在△ABC内,那么O是△ABC的【 】。

A、垂心

B、重心

C、外心

D、内心

答案解析

D

讨论

在正三棱锥ABC-A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为【 】

已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O-ABC的体积为【 】

如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1)求证:OE//平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值.

在四棱锥P-ABCD中,PD⊥底面ABCD,CD//AB,AD=DC=CB=1,AB=2,DP=√3. (1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.

已知正三棱锥P-ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={ Q∈S|PQ≤5},则T表示的区域的面积为【 】

如图, 在三棱锥 P − ABC 的平面展开图中, AC = 1, AB = AD = , AB ⊥ AC, AB ⊥ AD,cos ∠CAE = 30◦, 则 cos ∠FCB = __________.

如图, 四棱锥 P − ABCD 的底面为正方形, PD ⊥ 底面 ABCD. 设平面 PAD 与平面 PBC 的交线为 l.(1) 证明: l ⊥ 平面 P DC;(2) 已知 PD = AD = 1, Q 为 l 上的点, 求 PB 与平面 QCD 所成角的正弦值的最大值.

设三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=直角.求证:ABC是锐角三角形.

如图,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,,PA,BC的公垂线,ED=h.求证:三棱锥P-ABC的体积V=l2h/6.

如图,在三棱锥A-BCD中,平面ABD丄平面BCD,AB=AD,O为BD的中点. (1)证明:OA⊥CD;(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E-BC-D的大小为45°,求三棱锥A-BCD的体积.

甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S甲和S乙,体积分别为V甲和V乙.若S甲/S乙 =2,则V甲/V乙 =【 】

小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直. (1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).

某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是【 】

设正多面体每个顶点连有M条棱,每面都是正N边形,则正整数M和N满足关系:M>2,N>2,MN<2(M+N),这种正多面体共有【 】种。

有圆锥高8寸,底之半径4寸,今距顶点 2寸之处,作与底平行之平面截断此圆锥,问此两部分之体积各几何?

有长方体积之冰块,其长 2 步,阔 1 步 3 尺,厚4 尺,而此冰之比重为 0.93,若置其于水中,浮出水面之高几寸?

The base of a right circular cone has a diameter of 25 feet and its slant height is 40 feet. The surface of the cone is cut along a straight line from its vertex to a point on the base, and the surface is then spread out flat to form a sector of a circle. Find the angle of its sector in degrees.

下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有【 】

已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,AP=2,点C在底面圆周上,且二面角P-AC-O为45°,则【 】

已知圆锥面x²+y²=z²/3,记沿该圆锥面从P(-√3,3,6)到Q(√3,0,3)的曲线长度的最小值为I,则[10I]=________.