证明题(1987年全国统考

如图,三棱锥P-ABC中,已知PA⊥BC,PA=BC=l,,PA,BC的公垂线,ED=h.

求证:三棱锥P-ABC的体积V=l2h/6.

答案解析

连接AD和PD. ∵ BC⊥PA,BC⊥ED,PA与ED相交,∴ BC⊥平面PAD.∵ ED⊥PA,∴ S△PAD=1/2 PA∙ED=1/2 lh.三棱锥B-PAD的体积V1=1/3 (1/2 lh)∙BD=1/6 l...

查看完整答案

讨论

埃及胡夫金字塔是古代世界建筑奇迹之一, 它的形状可视为一个正四棱锥, 以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积, 则其侧面三角形底边上的高与底面正方形的边长的比值为 【】

在正三棱锥ABC-A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为【 】

已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O-ABC的体积为【 】

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,PA=,M,N分别为BC,PC的中点PD⊥DC,PM⊥MD. (1)证明:AB⊥PM;(2)求直线AN与平面PDM所成角的正弦值.

已知四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为36π,且3≤l≤3√3,则该四棱锥体积的取值范围是【 】

如图,PO是三棱锥P-ABC的高,PA=PB,AB⊥AC,E是PB的中点.(1)求证:OE//平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C-AE-B的正弦值.

在四棱锥P-ABCD中,PD⊥底面ABCD,CD//AB,AD=DC=CB=1,AB=2,DP=√3. (1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.

已知正三棱锥P-ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={ Q∈S|PQ≤5},则T表示的区域的面积为【 】

如图, 在三棱锥 P − ABC 的平面展开图中, AC = 1, AB = AD = , AB ⊥ AC, AB ⊥ AD,cos ∠CAE = 30◦, 则 cos ∠FCB = __________.

如图, 四棱锥 P − ABCD 的底面为正方形, PD ⊥ 底面 ABCD. 设平面 PAD 与平面 PBC 的交线为 l.(1) 证明: l ⊥ 平面 P DC;(2) 已知 PD = AD = 1, Q 为 l 上的点, 求 PB 与平面 QCD 所成角的正弦值的最大值.

底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.

如图,正方体ABCD-EFGH的棱长为2,在正方形ABEF的内切圆上任取一点P1,在正方形BCGF的内切圆上任取一点P2,在正方形EFGH的内切圆上任取一点P3,求|P1 P2 |+|P2 P3 |+|P3 P1 |的最小值与最大值.

如图,E,F分别为正方形的面ADD1A1、面BCC1B1的中心,则四边形在该正方形BFD1E的面上的射影可能是________.(要求:把可能的图的序号都填上)

已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为【 】

已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.

以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为______ ( 写出符合要求的一组答案即可).

某四面体的三视图如图所示,该四面体的表面积为【 】

对24小时内降水在平地上的积水厚度(mm)进行如下定义:小雨:0~10中雨:10~25大雨:25~50暴雨:50~100小明用一个圆锥形容器接了24小时的雨水,则这一天的雨水属于哪个等级【 】

如图,长方体ABCD-A1 B1 C1 D1中,已知AB=BC=2,AA1=3. (1)若P是A1 D1上的动点,求三棱锥C-PAD的体积;(2)求直线AB1与平面ACC1 A1的夹角大小.

两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π/3,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为【 】