计算题(1987年全国统考

由数字1,2,3,4,5组成没有重复数字且数字1与2不相邻的五位数,求这种五位数的个数.

答案解析

不同五位数有=72个.

讨论

乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有______种(用数字作答).

两只松鼠B和J为过冬收集了2021枚核桃. J将核桃依次编号为1到2021,并在它们最喜欢的树周围挖了一圈共2021个小坑.第二天早上, J发现B已经在每个小坑里放入了一枚核桃,但并未注意编号.不开心的J决定用2021次操作来改变这些核桃的位置.在第k次操作中把与第k号核桃相邻的两枚核桃交换位置.证明:存在某个λ,使得在第k次操作中, J交换了两枚编号为a和b的核桃,且a<k<b.

甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有【 】

The Bank of Oslo issues two types of coin:aluminium(denoted A) and bronze(denoted B). Marianne has n aluminium coins and n bronze coins, arranged in a row in some arbitrary initial order.A chain is any subsequence of consecutive coins of the same type.Given a fixed positive integer k<2n, Marianne repeatedly performs the following operation:she identifies the longest chain containing the kth coin from the left and moves all coins in that chain to the left end of the row.For example, if n = 4 and k=4 the process starting from the ordering AABBBABA would beAABBBABA→BBBAAABA→AAABBBBA→BBBBAAAA.Find all pairs (n, k) with 1 ≤ k ≤2n such that for every initial ordering at some moment during the process,the leftmost n coins will all be of the same type. 译文:奥斯陆银行发行了两种货币:铝币(记为A)和铜币(记为B).玛丽安有n枚铝币和n枚铜币,以任意初始方式排成一排。定义一条链为任意由相同类型货币构成的连续子列。给定正整数k<2n,玛丽安重复地进行如下操作:她找出包含(从左到右)第k枚硬币的最长链,然后把该链中所有货币移到序列最左端。例如,n=4,k=4时,对于初始序列 AABBBABA,过程如下:AABBBABA→BBBAAABA→AAABBBBA→BBBBAAAA.求所有满足1≤k≤2n的数组(n,k),使得对任意初始序列,都可以在有限次操作内使左端为n枚相同的货币。

如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有______种(以数字作答).

从数字1,2,3,4,5可重复地选出4个,能排列成多少个大于4000的奇数【 】

快递员收到 3 个同城快递任务,取送地点各不相同,取送件可穿插进行,不同的取送方式有【 】种。

有四个箱子,每个箱子装有3个红球利2个蓝球,且这20个球都是不同的。从这4个盒子中选出10个球,要求每个盒子至少选择一个红球和一个蓝球,则选择的方法共有多少种?

有 0,1,2,3,4,5,6,7 八个数字,可组成小于 10000 之数字有几?

现有11位同学报名博物馆的志愿讲解活动,活动从上午9点开始到下午5点结束,每小时安排一场公益小讲堂,每场需要1位同学为参观的游客提供讲解服务.为避免同学们劳累,馆方在排班时不会让同一人连续讲解2场,并且第一场与最后一场需要两位不同的同学负责.则馆方共有________种排班方式.