有 0,1,2,3,4,5,6,7 八个数字,可组成小于 10000 之数字有几?
解方程式x5-5x4-5x3+25x2+4x-20=0,已知各根为a,-a,b,-b,c等形式.
P -ABC 为一正三角锥,其底面三角形 ABC 正三角形之每边为 10 尺,而APB、BPC、CPA 三个面角均为 30°,求此三角锥之高.
F 点为抛物线 y² = 16x 之焦点,O 点为顶点,P 点为抛物线上任一点,PQ 为切线,自 O 点至 PQ 线之垂线与 FP 线相交 R 点,求 R 点之轨迹之方程式并绘其图形.
讨论方程式y=(x²+2x+3)/(2x²+3x+4)并绘其轨迹.
用数学归纳法求下列级数1/(1×2)+1/(2×3 )+1/(3×4)+⋯至n项之和.
已知方程式2x³+x²+3x+5=0之根为a,b,c,试用变换方程式法求以a(1/b+1/c),b(1/c+1/a),c(1/a+1/b)为根之方程式.
设有一三角形,其底为 7 cm,高为 5 cm,用圆规及尺作一正方形,其面积与此相等者.
用数学归纳法证明下列恒等式 1³+2³+3³+⋯+n³=[n(n+1)/2]²
有四个箱子,每个箱子装有3个红球利2个蓝球,且这20个球都是不同的。从这4个盒子中选出10个球,要求每个盒子至少选择一个红球和一个蓝球,则选择的方法共有多少种?
在 A , B , C , D 四位候选人中:1.如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果.2.如果选举班委三人,共有几种选法?写出所有可能的选举结果.
要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相信,问:有多少种不同的排法?(只要写出式子,不必计算)
由数字1,2,3,4,5组成没有重复数字且数字1与2不相邻的五位数,求这种五位数的个数.
A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有【 】种.
由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有【 】个。
同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有【 】
用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有【 】
四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有______种(用数字作答).
在一块并排10垄的田地中,选择2垄分别种植A、B两种作物, 每种作物种植一垄.为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄方法共有________种(用数字作答).
4 名同学到 3 个小区参加垃圾分类宣传活动, 每名同学只去 1 个小区, 每个小区至少安排 1 名学生, 则不同的安排方法有______种
已知集合A和集合B各含有12个元素,A∩B含有4个元素,试求同时满足下面两个条件的集合C的个数:(Ⅰ) C ⊂ A∪B,且C中含有3个元素;(Ⅱ) C∩A≠∅(∅表示空集).
若(1+x)n的展开式中,x3的系数等于x的系数的7倍,求n.
假设在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有2件次品的抽法有【 】种.
由数字1,2,3,4,5组成的没有重复数字的五位数,其中小于50000的偶数共有【 】个
在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共________种(用数字作答)。