四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有______种(用数字作答).
直线l过抛物线y2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a=________.
函数y=sin(x - π/6)cosx的最小值是________.
已知圆台上、下底面圆周都在球面上,且下底面过球心,母线与底面所成的角为π/3,则圆台的体积与球的体积之比为__________.
如图,A1B1C1-ABC是直三棱柱,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,若BC=CA=CC,则BD1与AF1所成的角的余弦值是【 】
在极坐标系中,椭圆的两焦点分别在极点和点(2c,0),离心率为e,则它的极坐标方程是【 】
用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有【 】
等差数列{an},{bn}的前n项和分别为Sn与Tn,若Sn/Tn =2n/(3n+1),则an/bn 等于【 】
已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是【 】
已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:①α//β⇒l⊥m;②α⊥β⇒l//m;③l//m⇒α⊥β;④l⊥m⇒α//β.其中正确的两个命题是【 】
快递员收到 3 个同城快递任务,取送地点各不相同,取送件可穿插进行,不同的取送方式有【 】种。
设 A 是一个三阶方阵,其元素为 1,2,…,9,且满足每行元素从左到右递增,每列元素从上到下递增,则满足条件的 A 有______个.
要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相信,问:有多少种不同的排法?(只要写出式子,不必计算)
由数字1,2,3,4,5组成没有重复数字且数字1与2不相邻的五位数,求这种五位数的个数.
A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有【 】种.
由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有【 】个。
同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有【 】
甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有【 】
如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有______种(以数字作答).