问答题(2024年罗马尼亚

Let n be a positive integer. Initially, a bishop is placed in each square of the top row of a 2n×2n chessboard; those bishops are numbered from 1 to 2n ,from left to right. A jump is a simultaneous move made by all bishops such that the following conditions are satisfied:

each bishop moves diagonally, in a straight line, some number of squares, and

at the end of the jump, the bishops all stand in different squares of the same row.

Find the total number of permutations σ of the numbers 1,2,⋯,2n with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order σ(1),σ(2),⋯,σ(2n ), from left to right.

【译】设n是正整数.最开始在一个2n×2n的方格棋盘上的第一行的每个小方格内均放置一枚“象”,这些“象”从左到右依次编号:1,2,⋯,2n.

定义一次“跳跃”操作为同时移动所有的“象”并满足如下条件:

每一枚“象”可沿对角线方向移动任意方格;

在这次“跳跃”操作结束时,所有的“象”恰在同一行的不同方格.

求满足下列条件的数1,2,⋯,2n的排列σ的总个数:存在一系列的“跳跃”操作,使得结束时所有的“象”都在棋盘的最后一行,并且从左到右编号依次为:σ(1),σ(2),⋯,σ(2n ).

答案解析

暂无答案

讨论

Let m<n be positive integers. Start with n piles, each of m objects. Repeatedly carry out the following operation: choose two piles and remove n objects in total from the two piles. For which (m ,n) is it possible to empty all the piles?【译】设正整数m<n.起初一共有n 堆石子,每堆有 m块石子. 重复执行以下操作: 选择两堆石子,从这两堆中移除共n 块石子.问:对于怎样的 (m , n),可以移除所有石子?

Let ABC be an acute-angled triangle with AB > AC. Let P be the intersection of the tangents to the circumcircle of ABC at B and C. The line through the midpoints of line segments PB and PC meets lines AB and AC at X and Y respectively.Prove that the quadrilateral AXPY is cyclic.【译】在锐角三角形ABC中,AB>AC,△ABC的外接圆在点B和点C处的切线交于点P.一条同时过PB和PC中点的直线与AB,AC分别交于点X,Y.求证:A,X,P,Y四点共圆.

Find all functions f from the integers to the integers such that for all integers n:2f(f(n))=5f(n)-2n【译】求所有函数f:z→z,使得对任意整数n有:2f(f(n))=5f(n)-2n

In the sequence 7,76,769,7692,76923,769230,… ,the nth term is given by the first n digits after the decimal point in the expansion of 10/13=0.7692307692⋯.Prove that of the first 60 terms of the sequence, at least 49 have three or more prime factors (repeated prime factors are allowed; for example, 76=2×2×19 has three prime factors).【译】在10/13=0.7692307692⋯的十进制表示中,由小数点后的前n位数构成数列:7,76,769,7692,76923,769230,… ,求证:在该数列的前60项中,至少有49项有三个或以上的素因子(包含重复的素因子,例如76=2×2×19有三个素因子).

设S={z∈C||z|=1}.求所有函数f:S→S,使得f为连续单射,且对任意z1,z2∈S,有f(z1 z2 )=f(z1)f(z2).

复矩阵A与A的任意正整数次常相似.(1)证明:A的特征值为0或 1;(2)求A的若当标准型.

给定素数p和正整数 n(n≥2).A为n个p阶循环群的直和.问:至少需要几个A的真子群,才能使他们的并集能覆盖A?

丘成桐女子赛数列极限

求所有的n∈N*,使得存在n阶实矩阵A,B,满足对任意的n维非零实向量v,Av,Bv线性无关.

函数f:R→R满足,对任意x∈R,存在ε>0使得f在(x-ε,x+ε)上恒等于某个多项式函数,问:f是否一定为多项式函数?

两只松鼠B和J为过冬收集了2021枚核桃. J将核桃依次编号为1到2021,并在它们最喜欢的树周围挖了一圈共2021个小坑.第二天早上, J发现B已经在每个小坑里放入了一枚核桃,但并未注意编号.不开心的J决定用2021次操作来改变这些核桃的位置.在第k次操作中把与第k号核桃相邻的两枚核桃交换位置.证明:存在某个λ,使得在第k次操作中, J交换了两枚编号为a和b的核桃,且a<k<b.

甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有【 】

The Bank of Oslo issues two types of coin:aluminium(denoted A) and bronze(denoted B). Marianne has n aluminium coins and n bronze coins, arranged in a row in some arbitrary initial order.A chain is any subsequence of consecutive coins of the same type.Given a fixed positive integer k<2n, Marianne repeatedly performs the following operation:she identifies the longest chain containing the kth coin from the left and moves all coins in that chain to the left end of the row.For example, if n = 4 and k=4 the process starting from the ordering AABBBABA would beAABBBABA→BBBAAABA→AAABBBBA→BBBBAAAA.Find all pairs (n, k) with 1 ≤ k ≤2n such that for every initial ordering at some moment during the process,the leftmost n coins will all be of the same type. 译文:奥斯陆银行发行了两种货币:铝币(记为A)和铜币(记为B).玛丽安有n枚铝币和n枚铜币,以任意初始方式排成一排。定义一条链为任意由相同类型货币构成的连续子列。给定正整数k<2n,玛丽安重复地进行如下操作:她找出包含(从左到右)第k枚硬币的最长链,然后把该链中所有货币移到序列最左端。例如,n=4,k=4时,对于初始序列 AABBBABA,过程如下:AABBBABA→BBBAAABA→AAABBBBA→BBBBAAAA.求所有满足1≤k≤2n的数组(n,k),使得对任意初始序列,都可以在有限次操作内使左端为n枚相同的货币。

如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有______种(以数字作答).

从数字1,2,3,4,5可重复地选出4个,能排列成多少个大于4000的奇数【 】

快递员收到 3 个同城快递任务,取送地点各不相同,取送件可穿插进行,不同的取送方式有【 】种。

有四个箱子,每个箱子装有3个红球利2个蓝球,且这20个球都是不同的。从这4个盒子中选出10个球,要求每个盒子至少选择一个红球和一个蓝球,则选择的方法共有多少种?

有 0,1,2,3,4,5,6,7 八个数字,可组成小于 10000 之数字有几?

现有11位同学报名博物馆的志愿讲解活动,活动从上午9点开始到下午5点结束,每小时安排一场公益小讲堂,每场需要1位同学为参观的游客提供讲解服务.为避免同学们劳累,馆方在排班时不会让同一人连续讲解2场,并且第一场与最后一场需要两位不同的同学负责.则馆方共有________种排班方式.

在 A , B , C , D 四位候选人中:1.如果选举正、副班长各一人,共有几种选法?写出所有可能的选举结果.2.如果选举班委三人,共有几种选法?写出所有可能的选举结果.